
Deep learning

3.4. Multi-Layer Perceptrons

François Fleuret

https://fleuret.org/dlc/

Jan 1, 2021

A linear classifier of the form

RD → R
x 7→ σ(w · x + b),

with w ∈ RD , b ∈ R, and σ : R→ R, can naturally be extended to a
multi-dimension output by applying a similar transformation to every output

RD → RC

x 7→ σ(wx + b),

with w ∈ RC×D , b ∈ RC , and σ is applied component-wise.

François Fleuret Deep learning / 3.4. Multi-Layer Perceptrons 1 / 9

https://fleuret.org/dlc/

Even though it has no practical value implementation-wise, we can represent
such a model as a combination of units. More importantly, we can extend it.

σx f (x ; w, b)

w, b

σ

σ

σ

σ

σ

σ

x f (x ; w, b)

w, b

Single unit One layer of units

σ

σ

σ

σ

σ

σ

σ

σ

σ

σ

σ

σ

σ

σ

σ

σ

σ

σ

σ

σ

σ

σ

x f (x ; w, b)

w (1), b(1) w (2), b(2) w (3), b(3)

Multiple layers of units

François Fleuret Deep learning / 3.4. Multi-Layer Perceptrons 2 / 9

This latter structure can be formally defined, with x(0) = x ,

∀l = 1, . . . , L, x(l) = σ
(
w (l)x(l−1) + b(l)

)
and f (x ;w , b) = x(L).

Layer 1 Layer L

x = x(0) ×

w (1)

+

b(1)

σ x(1) . . . x(L−1) ×

w (L)

+

b(L)

σ x(L) = f (x ; w, b)

Such a model is a Multi-Layer Perceptron (MLP).

François Fleuret Deep learning / 3.4. Multi-Layer Perceptrons 3 / 9

Note that if σ is an affine transformation, the full MLP is a composition of
affine mappings, and itself an affine mapping.

Consequently:

B The activation function σ should be non-linear, or the resulting MLP
is an affine mapping with a peculiar parametrization.

François Fleuret Deep learning / 3.4. Multi-Layer Perceptrons 4 / 9

The two classical activation functions are the hyperbolic tangent

x 7→
2

1 + e−2x
− 1

−1

1

and the rectified linear unit (ReLU)

x 7→ max(0, x)

0

François Fleuret Deep learning / 3.4. Multi-Layer Perceptrons 5 / 9

Universal approximation

François Fleuret Deep learning / 3.4. Multi-Layer Perceptrons 6 / 9

We can approximate any ψ ∈ C ([a, b],R) with a linear combination of
translated/scaled ReLU functions.

f (x) = σ(w1x + b1) + σ(w2x + b2) + σ(w3x + b3) + . . .

This is true for other activation functions under mild assumptions.

François Fleuret Deep learning / 3.4. Multi-Layer Perceptrons 6 / 9

Extending this result to any ψ ∈ C ([0, 1]D ,R) requires a bit of work.

We can approximate the sin function with the previous scheme, and use the
density of Fourier series to get the final result:

∀ε > 0, ∃K ,w ∈ RK×D, b ∈ RK, ω ∈ RK, s.t.

max
x∈[0,1]D

|ψ(x)− ω · σ(w x + b)| ≤ ε.

François Fleuret Deep learning / 3.4. Multi-Layer Perceptrons 7 / 9

So we can approximate any continuous function

ψ : [0, 1]D → R

with a one hidden layer perceptron

x 7→ ω · σ(w x + b),

where b ∈ RK , w ∈ RK×D , and ω ∈ RK .

Hidden layer

x ×

w

+

b

σ ·

ω

y

This is the universal approximation theorem.

François Fleuret Deep learning / 3.4. Multi-Layer Perceptrons 8 / 9

B A better approximation requires a larger hidden layer (larger K), and
this theorem says nothing about the relation between the two.

So this results states that we can make the training error as low as we want by
using a larger hidden layer. It states nothing about the test error

Deploying MLP in practice is often a balancing act between under-fitting and
over-fitting.

François Fleuret Deep learning / 3.4. Multi-Layer Perceptrons 9 / 9

	Universal approximation

