
Deep learning

12.2. LSTM and GRU

François Fleuret

https://fleuret.org/dlc/

https://fleuret.org/dlc/

The Long-Short Term Memory unit (LSTM) by Hochreiter and Schmidhuber
(1997), is a recurrent network that originally had a gating of the form

ct = ct−1 + it ⊙ gt

where ct is a recurrent state, it is a gating function and gt is a full update. This
assures that the derivatives of the loss w.r.t. ct does not vanish.

François Fleuret Deep learning / 12.2. LSTM and GRU 1 / 15

Notes

The three main ideas behind recurrent models
seen so far are:

• a hidden state which is updated each time
a new entry from the sequence is provided,

• the network can be trained with autograd
as usual to do “backprop trough time”,
with the recurrent network being unfolded
as a directed acyclic graph,

• a gating mechanism is very beneficial.

In LSTM, the hidden state is called a “cell state”,
and we note it ct .

It is noteworthy that this model implemented 20 years before the resnets of He et al.
(2015) uses the exact same strategy to deal with depth.

This original architecture was improved with a forget gate (Gers et al., 2000), resulting
in the standard LSTM used today.

In what follows we consider notation and variant from Jozefowicz et al. (2015).

François Fleuret Deep learning / 12.2. LSTM and GRU 2 / 15

The recurrent state is composed of a “cell state” ct and an “output state” ht . Gate ft
modulates if the cell state should be forgotten, it if the new update should be taken
into account, and ot if the output state should be reset.

ft = sigm
(
W(x f)xt +W(h f)ht−1 + b(f)

)
(forget gate)

it = sigm
(
W(x i)xt +W(h i)ht−1 + b(i)

)
(input gate)

gt = tanh
(
W(x c)xt +W(h c)ht−1 + b(c)

)
(full cell state update)

ct = ft ⊙ ct−1 + it ⊙ gt (cell state)

ot = sigm
(
W(x o)xt +W(h o)ht−1 + b(o)

)
(output gate)

ht = ot ⊙ tanh(ct) (output state)

As pointed out by Gers et al. (2000), the forget bias b(f) should be initialized with large
values so that initially ft ≃ 1 and the gating has no effect.

This model was extended by Gers et al. (2003) with “peephole connections” that allow
gates to depend on ct−1.

François Fleuret Deep learning / 12.2. LSTM and GRU 3 / 15

Notes

The main difference with the gating mechanism
we saw in lecture 12.1. “Recurrent Neural Net-
works” is that the weight ft of the previous cell
state, and the weight it of the full update are
independent of each other. In particular, they
can both be zero, resulting in a reset of the state.

h1t−1

c1t−1

h1t

c1t

. . .

. . .

. . .

. . .

LSTM cell

xt

Ψ

yt−1

Ψ

yt

! Prediction is done from the ht state, hence called the output state.

François Fleuret Deep learning / 12.2. LSTM and GRU 4 / 15

Notes

This picture shows the inputs, states and outputs
involved in a LSTM cell. The gates it , ft , and ot
are not displayed here, but are “inside” the cell.

Several such “cells” can be combined to create a multi-layer LSTM.

Two layer LSTM

h1t−1

c1t−1

h1t

c1t

. . .

. . .

. . .

. . .

LSTM cell

xt

h2t−1

c2t−1

h2t

c2t

. . .

. . .

. . .

. . .

LSTM cell

Ψ

yt−1

Ψ

yt

Ψ

yt−1

Ψ

yt

François Fleuret Deep learning / 12.2. LSTM and GRU 5 / 15

Notes

When several layers of LSTM are combined, the
first layer takes as input the sequence xt itself,
while the next layer take as input the output state
of the previous layer, the ht .

PyTorch’s torch.nn.LSTM implements this model.

Its processes several sequences, and returns two tensors, with D the number of layers
and T the sequence length:

• the outputs for all the layers at the last time step: h1T and hDT , and

• the outputs of the last layer at each time step: hD1 , . . . , h
D
T .

The initial recurrent states h10, . . . , h
D
0 and c10 , . . . , c

D
0 can also be specified.

François Fleuret Deep learning / 12.2. LSTM and GRU 6 / 15

PyTorch’s RNNs can process batches of sequences of same length, that can be encoded
in a regular tensor, or batches of sequences of various lengths using the type
nn.utils.rnn.PackedSequence.

Such an object can be created with nn.utils.rnn.pack_padded_sequence, which
expects as argument a first tensor of xt,ns T × N × . . . padded with zeros, and a
second tensor of Tns.

>>> from torch.nn.utils.rnn import pack_padded_sequence
>>> pack_padded_sequence(torch.tensor([[[1.], [2.]],
... [[3.], [4.]],
... [[5.], [0.]]]),
... torch.tensor([3, 2]))
PackedSequence(data=tensor([[1.],

[2.],
[3.],
[4.],
[5.]]), batch_sizes=tensor([2, 2, 1]),
sorted_indices=None, unsorted_indices=None)

! The sequences must be sorted by decreasing lengths.

nn.utils.rnn.pad_packed_sequence converts back to a padded tensor.

François Fleuret Deep learning / 12.2. LSTM and GRU 7 / 15

We implement a small model to test it on the toy task of lecture 12.1. “Recurrent
Neural Networks”.

class LSTMNet(nn.Module):
def __init__(self, dim_input, dim_recurrent, num_layers, dim_output):

super().__init__()
self.lstm = nn.LSTM(input_size = dim_input,

hidden_size = dim_recurrent,
num_layers = num_layers)

self.fc_o2y = nn.Linear(dim_recurrent, dim_output)

def forward(self, input):
Get the last layer's last time step activation
output, _ = self.lstm(input.permute(1, 0, 2))
output = output[-1]
return self.fc_o2y(F.relu(output))

!
permute makes the tensor T × N × . . . as expected by LSTM.forward,
and for simplicity, we consider all sequences to be of same length when
picking the last step.

François Fleuret Deep learning / 12.2. LSTM and GRU 8 / 15

Notes

Contrary to other PyTorch modules which expect
a mini-batch of size N × . . ., where N is the
number of samples in the mini-batch, nn.LSTM
expects a mini-batch to be of size T × N × . . . ,
where T is the sequence length.

0 50000 100000 150000 200000 250000

Nb. sequences seen

0.0

0.1

0.2

0.3

0.4

0.5

E
rr

or

elman

gating

lstm

2 4 6 8 10 12 14 16 18 20

Sequence length

0.0

0.1

0.2

0.3

0.4

0.5

E
rr

or

elman

gating

lstm

François Fleuret Deep learning / 12.2. LSTM and GRU 9 / 15

Notes

The graph on the left shows the test error as a
function of the number of sequences seen during
training.
The graph on the right shows the classification
error of the final trained model as a function of
the number of elements in the input sequence.
As expected the longer the sequence, the higher
the error.
The performance of gating and LSTM are the
same, which is not surprising because the task is
easy.

The LSTM were simplified into the Gated Recurrent Unit (GRU) by Cho et al. (2014),
with a gating for the recurrent state, and a reset gate.

rt = sigm
(
W(x r)xt +W(h r)ht−1 + b(r)

)
(reset gate)

zt = sigm
(
W(x z)xt +W(h z)ht−1 + b(z)

)
(forget gate)

h̄t = tanh
(
W(x h)xt +W(h h)(rt ⊙ ht−1) + b(h)

)
(full update)

ht = zt ⊙ ht−1 + (1− zt)⊙ h̄t (hidden update)

François Fleuret Deep learning / 12.2. LSTM and GRU 10 / 15

class GRUNet(nn.Module):
def __init__(self, dim_input, dim_recurrent, num_layers, dim_output):

super().__init__()
self.gru = nn.GRU(input_size = dim_input,

hidden_size = dim_recurrent,
num_layers = num_layers)

self.fc_y = nn.Linear(dim_recurrent, dim_output)

def forward(self, input):
Get the last layer's last time step activation
output, _ = self.gru(input.permute(1, 0, 2))
output = output[-1]
return self.fc_y(F.relu(output))

!
permute makes the tensor T × N × . . . as expected by GRU.forward,
and for simplicity, we consider all sequences to be of same length when
picking the last step.

François Fleuret Deep learning / 12.2. LSTM and GRU 11 / 15

0 50000 100000 150000 200000 250000

Nb. sequences seen

0.0

0.1

0.2

0.3

0.4

0.5

E
rr

or

elman

gating

lstm

gru

2 4 6 8 10 12 14 16 18 20

Sequence length

0.0

0.1

0.2

0.3

0.4

0.5

E
rr

or

elman

gating

lstm

gru

François Fleuret Deep learning / 12.2. LSTM and GRU 12 / 15

Notes

The graph on the left shows the test error as a
function of the number of sequences seen during
training.
The graph on the right shows the classification
error of the final trained model as a function of
the number of elements in the input sequence.
As expected the longer the sequence, the higher
the error.

The specific form of these units prevents the gradient from vanishing, but it may still be
excessively large on certain mini-batch.

The standard strategy to solve this issue is gradient norm clipping (Pascanu et al.,
2013), which consists of re-scaling the [norm of the] gradient to a fixed threshold δ
when it is above:

∇̃f =
∇f

∥∇f ∥
min (∥∇f ∥, δ) .

François Fleuret Deep learning / 12.2. LSTM and GRU 13 / 15

The function torch.nn.utils.clip_grad_norm applies this operation to the gradient
of a model, as defined by an iterator through its parameters:

>>> x = torch.empty(10)
>>> x.grad = x.new(x.size()).normal_()
>>> y = torch.empty(5)
>>> y.grad = y.new(y.size()).normal_()
>>> torch.cat((x.grad, y.grad)).norm()
tensor(4.0303)
>>> torch.nn.utils.clip_grad_norm_((x, y), 5.0)
tensor(4.0303)
>>> torch.cat((x.grad, y.grad)).norm()
tensor(4.0303)
>>> torch.nn.utils.clip_grad_norm_((x, y), 1.25)
tensor(4.0303)
>>> torch.cat((x.grad, y.grad)).norm()
tensor(1.2500)

François Fleuret Deep learning / 12.2. LSTM and GRU 14 / 15

Jozefowicz et al. (2015) conducted an extensive exploration of different recurrent
architectures through meta-optimization, and even though some units simpler than
LSTM or GRU perform well, they wrote:

“We have evaluated a variety of recurrent neural network architectures in
order to find an architecture that reliably out-performs the LSTM. Though
there were architectures that outperformed the LSTM on some problems,
we were unable to find an architecture that consistently beat the LSTM and
the GRU in all experimental conditions.”

(Jozefowicz et al., 2015)

François Fleuret Deep learning / 12.2. LSTM and GRU 15 / 15

Notes

The conclusion of this extensive experiments is
that LSTM is generally a good choice of recurrent
architecture.

References

K. Cho, B. van Merrienboer, Ç. Gülçehre, F. Bougares, H. Schwenk, and Y. Bengio. Learning
phrase representations using RNN encoder-decoder for statistical machine translation. CoRR,
abs/1406.1078, 2014.

F. A. Gers, J. A. Schmidhuber, and F. A. Cummins. Learning to forget: Continual prediction with
lstm. Neural Computation, 12(10):2451–2471, 2000.

F. A. Gers, N. N. Schraudolph, and J. Schmidhuber. Learning precise timing with lstm recurrent
networks. Journal of Machine Learning Research (JMLR), 3:115–143, 2003.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. CoRR,
abs/1512.03385, 2015.

S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computation, 9(8):
1735–1780, 1997.

R. Jozefowicz, W. Zaremba, and I. Sutskever. An empirical exploration of recurrent network
architectures. In International Conference on Machine Learning (ICML), pages 2342–2350, 2015.

R. Pascanu, T. Mikolov, and Y. Bengio. On the difficulty of training recurrent neural networks. In
International Conference on Machine Learning (ICML), 2013.

	References

