A standard result of probability theory is that if f is continuous, invertible and [almost everywhere] differentiable, and $X = f^{-1}(Z)$, then

$$\forall x, \mu_X(x) = \mu_Z(f(x)) \cdot |J_f(x)|.$$

The term $|J_f(x)|$ accounts for the local “stretching” of the space.
Since
\[\mu_X(x) = \mu_Z(f(x)) |J_f(x)|, \]
if \(f \) is a parametric function such that we can compute [and differentiate]
\[\mu_Z(f(x)) \text{ and } |J_f(x)|, \]
given \(x_1, \ldots, x_N \) i.i.d \(\sim \mu \), we can make \(\mu_X \) fit the data by maximizing
\[\sum_n \log \mu_X(x_n) = \sum_n \log \mu_Z(f(x_n)) + \log |J_f(x_n)|. \]

If \(Z \sim \mathcal{N}(0, I) \),
\[\log \mu_Z(f(x_n)) = -\frac{1}{2} \left(\|f(x_n)\|^2 + d \log 2\pi \right). \]

We aim at \(f(X) \sim \mathcal{N}(0, I) \), hence at \(f \) normalizing the distribution.

Consider an increasing piece-wise linear mapping with parameters \(\alpha, \xi_1, \ldots, \xi_Q \).
class PiecewiseLinear(nn.Module):
 def __init__(self, nb, xmin, xmax):
 super(PiecewiseLinear, self).__init__()
 self.xmin = xmin
 self.xmax = xmax
 self.nb = nb
 self.alpha = nn.Parameter(torch.tensor([xmin], dtype=torch.float))
 mu = math.log((xmax - xmin) / nb)
 self.xi = nn.Parameter(torch.empty(nb + 1).normal_(mu, 1e-4))

 def forward(self, x):
 y = self.alpha + self.xi.exp().cumsum(0)
 u = self.nb * (x - self.xmin) / (self.xmax - self.xmin)
 n = u.long().clamp(0, self.nb - 1)
 a = (u - n).clamp(0, 1)
 x = (1 - a) * y[n] + a * y[n + 1]
 return x

For $f : \mathbb{R} \to \mathbb{R}$ increasing, we have

$$|J_f(x_n)| = f'(x_n)$$

so we should minimize

$$\sum_n \frac{1}{2} \left(f(x_n)^2 + \log 2\pi \right) - \log f'(x_n).$$
To work with batches of samples, we have to compute \((f'(x_1), \ldots, f'(x_N))\) with autograd.

With
\[
\Phi(x_1, \ldots, x_N) = f(x_1) + \cdots + f(x_N)
\]
we have
\[
\nabla \Phi(x_1, \ldots, x_n) = (f'(x_1), \ldots, f'(x_N)).
\]

\[
\mathcal{L}(f) = \frac{1}{N} \sum_n \frac{1}{2} \left(f(x_n)^2 + \log 2\pi \right) - \log f'(x_n).
\]

```python
for input in train_input.split(batch_size):
    input.requires_grad_()
    output = model(input)

    derivatives, = autograd.grad(
        output.sum(), input,
        retain_graph = True, create_graph = True
    )

    loss = ( 0.5 * (output**2 + math.log(2*pi)) - derivatives.log() ).mean()

    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
```
Target distribution μ

Resulting mapping \hat{f}

μ_X with $X = \hat{f}^{-1}(Z)$ and $Z \sim \mathcal{N}(0, 1)$

Non-Volume Preserving networks
To apply the same idea to high dimension signals, we have to compute and differentiate $|J_f(x)|$. And to use that approach for synthesis, we can sample $Z \sim \mathcal{N}(0, I)$ and compute $f^{-1}(Z)$.

However, for standard layers:

- computing $f^{-1}(z)$ is impossible, and
- computing $|J_f(x)|$ is intractable.

Dinh et al. (2014) introduced the **coupling layers** to address both issues.

The resulting Non-Volume Preserving network (NVP) is one form of **normalizing flow** among many techniques (Papamakarios et al., 2019).

Remember that if f is a composition

$$f = f^{(K)} \circ \cdots \circ f^{(1)}$$

we have

$$J_f(x) = \prod_{k=1}^{K} J_{f^{(k)}} \left(f^{(k-1)} \circ \cdots \circ f^{(1)}(x) \right),$$

hence

$$\log |J_f(x)| = \sum_{k=1}^{K} \log \left| J_{f^{(k)}} \left(f^{(k-1)} \circ \cdots \circ f^{(1)}(x) \right) \right|.$$
We use here the formalism from Dinh et al. (2016).

Given a dimension d, a Boolean vector $b \in \{0, 1\}^d$ and two mappings

\[
s : \mathbb{R}^d \rightarrow \mathbb{R}^d, \\
t : \mathbb{R}^d \rightarrow \mathbb{R}^d,
\]

we define a [fully connected] coupling layer as the transformation

\[
c : \mathbb{R}^d \rightarrow \mathbb{R}^d \\
x \mapsto b \odot x + (1-b) \odot (x \odot \exp(s(b \odot x)) + t(b \odot x))
\]

where \exp is component-wise, and \odot is the Hadamard component-wise product.

For clarity in what follows, b has all 1s first, follows by 0s, but this is not required.

\[
b = (1,1,...,1,0,0,...,0)_{\Delta \Delta d-\Delta}
\]

The expression

\[
c(x) = b \odot x + (1-b) \odot (x \odot \exp(s(b \odot x)) + t(b \odot x))
\]

can be understood as: forward $b \odot x$ unchanged, and apply to $(1-b) \odot x$ an invertible transformation parametrized by $b \odot x$.

The consequence is that c is invertible, and if $y = c(x)$

$$x = b \odot y + (1 - b) \odot (y - t(b \odot y)) \odot \exp(-s(b \odot y)).$$

The second property of this mapping is the simplicity of its Jacobian.

$$J_c(x) = \begin{pmatrix}
1 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & 1
\end{pmatrix}
\begin{pmatrix}
(0) \\
\exp(s_{\Delta+1}(x \odot b)) \\
\vdots \\
\exp(s_d(x \odot b))
\end{pmatrix}
\begin{pmatrix}
(0) \\
\exp(s_{\Delta+1}(x \odot b)) \\
\vdots \\
\exp(s_d(x \odot b))
\end{pmatrix}
\begin{pmatrix}
1 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & 1
\end{pmatrix}

and we have

$$\log |J_c(x)| = \sum_{i : b_i = 0} s_i(x \odot b)$$

$$= \sum_i ((1 - b) \odot s(x \odot b))_i.$$
dim = 6

x = torch.empty(1, dim).normal_().requires_grad_()
b = torch.zeros(1, dim)
b[:, :dim//2] = 1.0

s = nn.Sequential(nn.Linear(dim, dim), nn.Tanh())
t = nn.Sequential(nn.Linear(dim, dim), nn.Tanh())
c = b * x + (1 - b) * (x * torch.exp(s(b * x)) + t(b * x))

Flexing a bit
j = torch.cat([autograd.grad(c_k, x, retain_graph=True)[0] for c_k in c[0]])

print(j)

prints
tensor([[1.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000],
 [0.0000, 1.0000, 0.0000, 0.0000, 0.0000, 0.0000],
 [0.0000, 0.0000, 1.0000, 0.0000, 0.0000, 0.0000],
 [0.4001, -0.3774, -0.9410, 1.0074, 0.0000, 0.0000],
 [-0.1756, 0.0409, 0.0808, 0.0000, 1.2412, 0.0000],
 [0.0875, -0.3724, -0.1542, 0.0000, 0.0000, 0.6186]])

To recap, with $f^{(k)}$, $k = 1, \ldots, K$ coupling layers,

$$f = f^{(K)} \circ \cdots \circ f^{(1)},$$

and $x_n^{(0)} = x_n$ and $x_n^{(k)} = f^{(k)}(x_n^{(k-1)})$, we train by minimizing

$$\mathcal{L}(f) = -\sum_n \frac{1}{2} \left(\left\| x_n^{(K)} \right\|^2 + d \log 2\pi \right) + \sum_{k=1}^K \log \left| J_{f^{(k)}}(x_n^{(k-1)}) \right|,$$

with

$$\log \left| J_{f^{(k)}}(x) \right| = \sum_i \left(\left(\left(1 - b^{(k)} \right) \odot s^{(k)} \right)(x \odot b^{(k)}) \right)_i.$$

And to sample we just need to generate $Z \sim \mathcal{N}(0, I)$ and compute X.
A coupling layer can be implemented with

class NVPCouplingLayer(nn.Module):
 def __init__(self, map_s, map_t, b):
 super(NVPCouplingLayer, self).__init__()
 self.map_s = map_s
 self.map_t = map_t
 self.register_buffer('b', b.unsqueeze(0))

 def forward(self, x, ldj): # ldj for log det Jacobian
 s, t = self.map_s(self.b * x), self.map_t(self.b * x)
 ldj = ldj + ((1 - self.b) * s).sum(1)
 y = self.b * x + (1 - self.b) * (torch.exp(s) * x + t)
 return y, ldj

 def invert(self, y):
 s, t = self.map_s(self.b * y), self.map_t(self.b * y)
 return self.b * y + (1 - self.b) * (torch.exp(-s) * (y - t))

The forward here computes both the image of x and the update on the accumulated determinant of the Jacobian, i.e.

$$(x, u) \mapsto (f(x), u + |J_f(x)|).$$

We can then define a complete network with one-hidden layer tanh MLPs for the s and t mappings

class NVPNet(nn.Module):
 def __init__(self, dim, hidden_dim, depth):
 super(NVPNet, self).__init__()
 b = torch.empty(dim)
 self.layers = nn.ModuleList()
 for d in range(depth):
 if d%2 == 0:
 i = torch.randperm(b.numel())[0:b.numel() // 2]
 b.zero_()[i] = 1
 else:
 b = 1 - b
 map_s = nn.Sequential(nn.Linear(dim, hidden_dim), nn.Tanh(),
 nn.Linear(hidden_dim, dim))
 map_t = nn.Sequential(nn.Linear(dim, hidden_dim), nn.Tanh(),
 nn.Linear(hidden_dim, dim))
 self.layers.append(NVPCouplingLayer(map_s, map_t, b.clone()))

 def forward(self, x, ldj):
 for m in self.layers: x, ldj = m(x, ldj)
 return x, ldj

 def invert(self, y):
 for m in reversed(self.layers): y = m.invert(y)
 return y
And the log-proba of individual samples of a batch

```python
def LogProba(x, ldj):
    log_p = -0.5 * (x**2 + math.log(2*pi)).sum(1) + ldj
    return log_p
```

Training is achieved by maximizing the mean log-proba

```python
batch_size = 100

model = NVPNet(dim = 2, hidden_dim = 2, depth = 4)
optimizer = optim.Adam(model.parameters(), lr = 1e-2)

for e in range(args.nb_epochs):
    for input in train_input.split(batch_size):
        output, ldj = model(input, 0)
        loss = - LogProba(output, ldj).mean()
        model.zero_grad()
        loss.backward()
        optimizer.step()
```

Finally, we can sample according to μ_X with

```python
z = torch.empty(nb_generated_samples, 2).normal_()
x = model.invert(z)
```
Dinh et al. (2016) apply this approach to convolutional layers by using \(b_s \) consistent with the activation map structure, and reducing the map size while increasing the number of channels.

Figure 3: Masking schemes for affine coupling layers. On the left, a spatial checkerboard pattern mask. On the right, a channel-wise masking. The squeezing operation reduces the \(4 \times 4 \times 1 \) tensor (on the left) into a \(2 \times 2 \times 4 \) tensor (on the right). Before the squeezing operation, a checkerboard pattern is used for coupling layers while a channel-wise masking pattern is used afterward.

(Dinh et al., 2016)
They combine these layers by alternating masks, and branching out half of the channels at certain points to forward them unchanged.

![Image](image_url)

(a) In this alternating pattern, units which remain identical in one transformation are modified in the next.

(b) Factoring out variables. At each step, half the variables are directly modeled as Gaussians, while the other half undergo further transformation.

Figure 4: Composition schemes for affine coupling layers.

(Dinh et al., 2016)

The structure for generating images consists of

- \(\times 2 \) stages
 - \(\times 3 \) checkerboard coupling layers,
 - a squeezing layer,
 - \(\times 3 \) channel coupling layers,
 - a factor-out layer.

- \(\times 1 \) stage
 - \(\times 4 \) checkerboard coupling layers
 - a factor-out layer.

The \(s \) and \(t \) mappings get more complex in the later layers.
Figure 7: Samples from a model trained on Imagenet (64 × 64).

(Dinh et al., 2016)

Figure 8: Samples from a model trained on CelebA.

(Dinh et al., 2016)
Figure 9: Samples from a model trained on LSUN (bedroom category).

(Dinh et al., 2016)

Figure 10: Samples from a model trained on LSUN (church outdoor category).

(Dinh et al., 2016)
over sample quality in a limited capacity setting. As a result, our model outputs sometimes highly improbable samples as we can notice especially on CelebA. As opposed to variational autoencoders, the samples generated from our model look not only globally coherent but also sharp. Our hypothesis is that as opposed to these models, real NVP does not rely on fixed form reconstruction cost like an L_2 norm which tends to reward capturing low frequency components more heavily than high frequency components. Unlike autoregressive models, sampling from our model is done very efficiently as it is parallelized over input dimensions. On Imagenet and LSUN, our model seems to have captured well the notion of background/foreground and lighting interactions such as luminosity and consistent light source direction for reflectance and shadows.

We also illustrate the smooth semantically consistent meaning of our latent variables. In the latent space, we define a manifold based on four validation examples $z^{(1)}, z^{(2)}, z^{(3)}, z^{(4)}$, and parametrized by two parameters ϕ and ϕ' by,

$$
 z = \cos(\phi) (\cos(\phi') z^{(1)} + \sin(\phi') z^{(2)}) + \sin(\phi) (\cos(\phi') z^{(3)} + \sin(\phi') z^{(4)}).
$$

We project the resulting manifold back into the data space by computing $g(z)$. Results are shown in Figure 6. We observe that the model seems to have organized the latent space with a notion of meaning that goes well beyond pixel space interpolation. More visualization are shown in the Appendix.

5 Discussion and conclusion

In this paper, we have defined a class of invertible functions with tractable Jacobian determinant, enabling exact and tractable log-likelihood evaluation, inference, and sampling. We have shown that this class of generative model achieves competitive performances, both in terms of sample quality and log-likelihood. Many avenues exist to further improve the functional form of the transformations, for instance by exploiting the latest advances in dilated convolutions [69] and residual networks architectures [60].

This paper presented a technique bridging the gap between auto-regressive models, variational autoencoders, and generative adversarial networks. Like auto-regressive models, it allows tractable and exact log-likelihood evaluation for training. It allows however a much more flexible functional form, similar to that in the generative model of variational autoencoders. This allows for fast and exact sampling from the model distribution. Like GANs, and unlike variational autoencoders, our technique does not require the use of a fixed form reconstruction cost, and instead defines a cost in terms of higher level features, generating sharper images. Finally, unlike both variational autoencoders and GANs, our technique is able to learn a semantically meaningful latent space which is as high dimensional as the input space. This may make the algorithm particularly well suited to semi-supervised learning tasks, as we hope to explore in future work.

References

