Deep learning

10.2. Causal convolutions

Francois Fleuret

https://fleuret.org/dlc/

UNIVERSITE
DE GENEVE

https://fleuret.org/dlc/

If we use an autoregressive model with a masked input as we saw in lecture
10.1. “Auto-regression”

f:{0,1}7 x RT - R®
the input differs from a position to another.

During training, even though the full sequence is known, common computation
is lost.

Francois Fleuret Deep learning / 10.2. Causal convolutions 1/25

Notes

With the models we saw previously, the input
differs from one position to another: when pre-
dicting a new component, both the mask and the
value tensor are recomputed.

Consequently such a model does not leverage that
most computation is shared between positions.
Classical autoregressive models used in practice
rely on the structure of the model to ensure that
the distribution predicted for a certain component
of the signal only depends on the component
predicted before, and can compute a loss on all
the sequence component in one pass.

These structures are called “causal”, since only
the “past” can influence the “future”.

Instead of predicting [the distribution of] one component, the model could predict [the

distributions] at every position of the sequence, that is

f:RT 5 RTXC,

It can be used for synthesis with

x1 < sample (f(0,...,0))

xp < sample (f2(x1,0,...,0))
x3 < sample (3(x1, x2,0,...,0))
x7 4 sample (fr(x1, x2,...,x7-1,0))

where the Os simply fill in for unknown values, and the mask is not needed.

Frangois Fleuret Deep learning / 10.2. Causal convolutions

2/25

If additionally, the model is such that “future values” do not influence the prediction at
a certain time, that is

Vtaxla cee s Xe, O, '7047—*1?7&1) s 75T*l‘7
fro1(Xxt, .y xe, a1, .., ar—¢) = fepa(xt, .o, xe, B1, - -, BT—¢)

then, we have in particular

f1(0,...,0) = A(x1,...,xT)
f(x1,0,...,0) = fo(x1,...,xT)
f3(x1,x2,0,...,0) = f3(x1,...,x7)

fT(Xl,XQ, c e ,XT_1,O) = fT(Xl, e ,XT)

Francois Fleuret Deep learning / 10.2. Causal convolutions 3/25

This provides a tremendous computational advantage during training, since all the
fe(x1,...,x7) can be computed with a single forward pass:

£(F,x) =Y (fi(xt, ., xe-1,0,...,0), xt)
t

= £(filxa, ..., xT),xt).

f is computed once

Such models are referred to as causal, since the future cannot affect the past.

Francois Fleuret Deep learning / 10.2. Causal convolutions 4 /25

We can illustrate this with convolutional models. Standard convolutions let information
flow “to the past,” and masked input was a way to condition only on already generated
values.

Padding

Padding | :
| Cﬁ |
| |

Francois Fleuret Deep learning / 10.2. Causal convolutions 5/25

Notes

On this figure, the bottom row is the input se-
quence. Here we consider the prediction of xs
based on (x1, x2, x3, X4).

A standard convolution with a filter of size 2n + 1
takes as input n values around the location to
predict:

e n values in the past,
e one at the current time step, and

e n values in the future.

To prevent “future” values to be taken into ac-
count in an autoregressive model, the current
value and the future ones were zeroed.

Such a model can be made causal with convolutions that let information flow only to

the future, combined with a first convolution that hides the present.

O 0 0 060 0

© O g OSNORNONNO,

Frangois Fleuret Deep learning / 10.2. Causal convolutions

Notes

Instead of using masks and zeroed values, the
model can explicitly be made causal by using a
first convolution that hides the current and future
values, and all others that hide future values.

6/ 25

Another option for the first layer is to shift the input by one entry to hide the present.

Padding Q Q O O @ Q

00

O ORNO M ORIONS®

7

Padded-shifted right

Francois Fleuret Deep learning / 10.2. Causal convolutions 7/25

Frangois Fleuret

PyTorch's convolutional layers do no accept asymmetric padding, but we can do it with

F.pad, which even accepts negative padding to remove entries.

For a n-dim tensor, the padding specification is
(startn, endy, start,_1,end,_1, ..., start,_, end,_x)

>>> x = torch.randint (10, (2, 1, 5))

>>> x
tensor ([[[1, 6, 3, 9, 111,
[[4, 8, 2, 2, 911D
>>> F.pad(x, (-1, 1))
tensor([[[6, 3, 9, 1, 011,
[es, 2, 2, 9, 0111
>>> F.pad(x, (0, 0, 2, 0))
tensor ([[[0, O, 0, O, 0],
[0, 0, 0, O, 07,
[1, 6, 3, 9, 111,
[fo, o, o, 0, 01,
[0, 0, 0, 0O, 07,
[4, 8, 2, 2, 9111)

Similar processing can be achieved with the modules nn.ConstantPadid,
nn.ConstantPad2d, or nn.ConstantPad3d.

Deep learning / 10.2. Causal convolutions

8/ 25

Here some train sequences as in lecture 10.1. “Auto-regression”.

50
“
.o
.
ae®®
»
10
o B
50
“
.
]%enenes
0
10
o B
50
“
.e
.o
et
0
10
] B

Francois Fleuret

Deep learning / 10.2. Causal convolutions

9/25

Model

class NetToyld(nn.Module) :
def __init__(self, nb_classes, ks = 2, nc = 32):

super().__init__Q)
self.pad = (ks - 1, 0)
self.conv0 = nn.Convld(1l, nc, kernel_size = 1)
self.convl = nn.Convid(nc, nc, kernel_size = ks)
self.conv2 = nn.Convid(nc, nc, kernel_size = ks)
self.conv3 = nn.Convid(nc, nc, kernel_size = ks)
self.conv4 = nn.Convid(nc, nc, kernel_size = ks)
self.convb = nn.Convid(nc, nb_classes, kernel_size = 1)

def forward(self, x):

= F.relu(self.convO(F.pad(x, (1, -1))))
= F.relu(self.convl(F.pad(x, self.pad)))
relu(self.conv2(F.pad(x, self.pad)))
relu(self.conv3(F.pad(x, self.pad)))
relu(self.conv4(F.pad(x, self.pad)))
= self.convb(x)

return x.permute(0, 2, 1).contiguous()

F.
=F.
=F.

F.

E T T - B

Francois Fleuret Deep learning / 10.2. Causal convolutions 10 / 25

Notes

The model takes as input only one channel, the
value tensor, and outputs the distribution over
the classes.

The model is made causal using a negative
padding (1, -1) on the input, which adds a
zero on the left, and removes one value on the
right.

The last convolution layer conv5 uses a kernel of
size 1 to convert the number of channels to the
needed number of classes C.

The permute operation convert the batch tensor
shape from N x C x T to N x T x C which is
the format expected for sampling.

Training loop

for sequences in train_input.split(args.batch_size):

input = (sequences - mean)/std
output = model (input)
loss = cross_entropy(

output.view(-1, output.size(-1)),
sequences.view(-1)

optimizer.zero_grad()
loss.backward()
optimizer.step()

Francois Fleuret Deep learning / 10.2. Causal convolutions

Notes

The cross-entropy loss is computed by reshaping
the output to NT X C and the target to NT.

11/ 25

Synthesis

generated = train_input.new_zeros((48,) + train_input.size()[1:])
flat = generated.view(generated.size(0), -1)

for t in range(flat.size(1)):
input = (generated.float() - mean) / std
output = model (input)
logits = output.view(flat.size() + (-1,))[:, t]
dist = torch.distributions.categorical.Categorical(logits = logits)
flat[:, t] = dist.sample()

Frangois Fleuret Deep learning / 10.2. Causal convolutions

Notes

For causal models, the sampling has also to be
done in order, component by component. Even
though the model outputs the distribution for
the entire time steps at once, the only valid ones
are those that follows immediately valid already
generated values

Here we generate a batch of 48 sequences in
parallel.

The selection of distributions for position t is
done with

output.view(flat.size() + (-1,))[:, t].

12 /25

Some generated sequences

& w0 & w0
b
.
P .. 50 peryl P 5
osoe .e .
. . .
eaece . .
one® n® os®
w o w .o © = w e
POTTL T 0o’ PPPTTYS L
L o0 e et seses caetose
. aee se®%s ee,, se asaes
» E » eae,)
) 0 » 2
10 s 10 10
o B 1o 3 0 s B 0 B To 5 0 B3) o H o 3) 3 k) 0 B To 5) B3)
& & & ®
Py 0 P %
agaecete®?’
“ ce® @ © I S A @ -
ae® asce asace
cete csetee cestoee
sesadesecccasastoscse aene - aee®® seseseseetee .
w W sesececese, ., » W ooa,
“ten,. .
ee,,
oay
» 0 » 2
10 10 10 10
o 5 10 15 0 3 0 0 5 To 5 0 B3 0 o H o 5) 3 k) 0 B To 5) B3)
) w0 & ®
Py 0 P %
eae
“ o @ © @ et
. eace
oe? cacee’ aoe . senace®®
“ . o]sesesena aeccace saacoce wl®ea sscacaca®eee i acasasaca
cey “ey
. ooy
oey eoq
“ee .u,y
» . 2 » o, 2
.
10 10 1. 10
] B 10 5 0 5 0 0 B To 1 0 B3) 0 H o 5) 5) 0 5 1o 15 0 E3 0

Francois Fleuret

Deep learning / 10.2. Causal convolutions

Notes

The generated sequences are generally satisfying
and have the expected structure.

13/ 25

The global structure may not be properly generated.

This can be fixed with dilated convolutions to have a larger context.
Francois Fleuret Deep learning / 10.2. Causal convolutions 14 / 25

Notes

However, we may observe more than a single
“cut” in a generated sequence, although training
sequences only contain one.

This did not happen for the “masked” model of
lecture 10.1. “Auto-regression”. This pathologi-
cal behavior is explained by the limited kernel size
of the convolutions the prevent the model from
looking at a context large enough. It cannot spot
if a cut was already generated.

Model

class NetToyldWithDilation(nn.Module):
def __init__(self, nb_classes, ks = 2, nc = 32):
super().__init__Q)
self.conv0 = nn.Convld(1l, nc, kernel_size = 1)
self.padl = ((ks-1) * 2, 0)
self.convl = nn.Convid(nc, nc, kernel_size
self.pad2 = ((ks-1) * 4, 0)

self.conv2 = nn.Convid(nc, nc, kernel_size = ks, dilation

self.pad3 = ((ks-1) * 8, 0)
self.conv3 = nn.Convid(nc, nc, kernel_size
self.pad4 = ((ks-1) * 16, 0)

self.conv4 = nn.Convid(nc, nc, kernel_size = ks, dilation

self.convb = nn.Convid(nc, nb_classes, kernel_size = 1)

def forward(self, x):

= F.relu(self.convO(F.pad(x, (1, -1))))
relu(self.convl(F.pad(x, self.padl)))
relu(self.conv2(F.pad(x, self.pad2)))
relu(self.conv3(F.pad(x, self.pad3)))
relu(self.conv4(F.pad(x, self.pad4)))
= self.conv5(x)

return x.permute(0, 2, 1).contiguous()

F.
F.
F.
F.

E T T - B

Francois Fleuret Deep learning / 10.2. Causal convolutions

ks, dilation

ks, dilation

2)
4)
8)

16)

15 /25

Notes

The context taken into account when generating
a value can be increase with dilated convolutions
(see lecture 4.4. “Convolutions”). The paddings
to make the structure causal are adapted accord-

ingly.

Francois Fleuret

Some generated sequences

& w0 & w0
P 50 P 5
. .
w w “ w
eot?
. .o . .
st - saeace sace asasacee
sesesen,, » nle »
) 2 » 2
10 s 10 10
o B 1o 3 E) B3 E)) 5) B3) o H o 3 Ed 3 k) 0 B To 5) B3)
& & & ®
Py % P %
“ @ © @
esesesace)
. E » 3
2 » 2
10 10 10 10
o B o 55 E) E3 E)) 5) B3) o H o 5 3 k) 0 B To 5) B3)
) w0 & ®
Py % P %
“ @ © @
*e LEYR YR sssssse
0] *te, acae 0 oay »
.
.
» 2 »
10 10 1. 10
] B 10 5 E) E3)) 5) B3) 0 H o 5 E) 3 k) 0 B To 13) B3)

Deep learning / 10.2. Causal convolutions

16 /25

The WaveNet model proposed by Oord et al. (2016a) for voice synthesis relies in large

part on such an architecture.

Output
Dilation = 8

Hidden Layer
Dilation = 4

Hidden Layer
Dilation =2

Hidden Layer
Dilation =1

Input

Figure 3: Visualization of a stack of dilated causal convolutional layers.

Frangois Fleuret Deep learning / 10.2. Causal convolutions

(Oord et al., 2016a)

Notes

The precursor of all the state-of-the-art methods
for voice synthesis are based on autoregressive
models with dilated convolutions (no recurrent
networks as previously done).

17 /25

Causal convolutions for images

Francois Fleuret Deep learning / 10.2. Causal convolutions 18 / 25

The same mechanism can be implemented for images, using causal convolution:

P

N o

Vertical stack T

o|lo|Oo|~ |~
oO|lo|Oo|~ |~

S| o | ||
[
S |lo|o|— |+

o | ©

< —

“----... Horizontal stack

Figure 1: Left: A visualization of the PixelCNN that maps a neighborhood of pixels to prediction for
the next pixel. To generate pixel x; the model can only condition on the previously generated pixels
Z1,...2;—1. Middle: an example matrix that is used to mask the 5x5 filters to make sure the model
cannot read pixels below (or strictly to the right) of the current pixel to make its predictions. Right:
Top: PixelCNNs have a blind spot in the receptive field that can not be used to make predictions.
Bottom: Two convolutional stacks (blue and purple) allow to capture the whole receptive field.

(Oord et al., 2016b)

Francois Fleuret Deep learning / 10.2. Causal convolutions 19 / 25

Notes

(Oord et al., 2016b) propose 2D convolutions that
respect the causal structure for the raster scan
order. This is achieved by combining convolutions
that look above the current point and strictly on
its left.

ks = 5

hpad = (ks//2, ks//2, ks//2, 0)
convlih = nn.Conv2d(1, 1, kernel_size
conv2h = nn.Conv2d(1, 1, kernel_size
vpad = (ks//2, 0, 0, 0)
convlv = nn.Conv2d(1l, 1, kernel_size = (1, ks//2+1))

(ks//2+1, ks))
(ks//2+1, ks))

conv2v = nn.Conv2d(1, 1, kernel_size = (1, ks//2+1))
x = F.pad(x, (0, 0, 1, -1)) x = F.pad(x, (1, -1, 0, 0))
x = convih(F.pad(x, hpad)) x = convlv(F.pad(x, vpad))
x = conv2h(F.pad(x, hpad)) x = conv2v(F.pad(x, vpad))
Francois Fleuret Deep learning / 10.2. Causal convolutions 20 / 25
Notes

The shades of grays indicate how much the value
at a given position is influenced by the value at
the pixel framed in red.

On the left, we first shift the input signal down-
ward by one row, and apply twice a padding to
shift downward and a convolution with a cen-
tered rectangular kernel, resulting each time in a
convolution by a shifted kernel downward.

On the right we first shift the signal to the right
by one column, and then apply twice a padding
to shift right and a convolution by a strip kernel,
resulting each time in a convolution by a thin
horizontal kernel shifted to the right.

This process assures that the value of the pixel
framed in red influences only pixel strictly below
or on the same row but strictly on its right.

class PixelCNN(nn.Module):

def __init__(self, nb_classes, in_channels = 1, ks = 5):
super () .__init__Q
self .hpad = (ks//2, ks//2, ks//2, 0)
self.vpad = (ks//2, 0, 0, 0)
self.convih = nn.Conv2d(in_channels, 32, kernel_size = (ks//2+1, ks))
self.conv2h = nn.Conv2d (32, 64, kernel_size = (ks//2+1, ks))
self.convlv = nn.Conv2d(in_channels, 32, kernel_size = (1, ks//2+1))
self.conv2v = nn.Conv2d(32, 64, kernel_size = (1, ks//2+1))
self.finall = nn.Conv2d (128, 128, kernel_size = 1)
self.final2 = nn.Conv2d (128, nb_classes, kernel_size = 1)

def forward(self, x):
xh = F.pad(x, (0, 0, 1, -1))
xv = F.pad(x, (1, -1, 0, 0))
xh = F.relu(self.convih(F.pad(xh, self.hpad)))
xv = F.relu(self.convlv(F.pad(xv, self.vpad)))
xh = F.relu(self.conv2h(F.pad(xh, self.hpad)))
xv = F.relu(self.conv2v(F.pad(xv, self.vpad)))

x = F.relu(self.finall(torch.cat((xh, xv), 1)))
X self.final2(x)

return x.permute(0, 2, 3, 1).contiguous()

Frangois Fleuret Deep learning / 10.2. Causal convolutions 21 /25

Notes

The forward pass processes two tensors in paral-
lel, one with the causal convolution propagating
information down and the other with causal con-
volutions propagating it to the right. These two
tensors are concatenated and processed through
a 1 X 1 convolution to get 256 logits per loca-
tions.

The final step is to permute the dimensions from
NxCxXxHXWtoNxHXxWxC.

Some generated images

Francois Fleuret Deep learning / 10.2. Causal convolutions 22 /25

Notes

The synthesis process of 2D image here is exactly
the same as for 1D sequences.

The generated images have some consistent char-
acteristics: pieces of lines, rounded shapes, loops,
white background.

The generation looks fine locally, but not globally.
Since the model is fully convolutional, it has no
way to make the prediction position-dependent.
The generation process have no clue where it is in
the image, and as result cannot behave differently
at different locations.

Such a fully convolutional model has no way to make the prediction position-dependent,
which results here in local consistency, but fragmentation.

A classical fix is to supplement the input with a positional encoding, that is a
multi-channel input that provides full information about the location.

Here with a resolution of 28 x 28 we can encode the positions with 5 Boolean channels
per coordinate.

Francois Fleuret Deep learning / 10.2. Causal convolutions 23 /25

Input tensor with
positional encoding

Column index encoding

Row index encoding

Francois Fleuret Deep learning / 10.2. Causal convolutions 24 /25

Notes

In addition to feeding the model with what has
already been generated, we input ten additional
channels which are the same for all the samples.
Each pixel of the 28 X 28 image is associated
with a unique set of Boolean values encoding its
location in the image.

Some generated images

Francois Fleuret Deep learning / 10.2. Causal convolutions 25 /25

Notes

With the positional encoding, the synthesized
results are more satisfying: there is no fragmen-
tation anymore, and the overall shapes are more
similar to that of actual MNIST samples.

References

A. Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and
K. Kavukcuoglu. WaveNet: A generative model for raw audio. CoRR, abs/1609.03499, 2016a.

A. Oord, N. Kalchbrenner, O. Vinyals, L. Espeholt, A. Graves, and K. Kavukcuoglu. Conditional
image generation with PixelCNN decoders. CoRR, abs/1606.05328, 2016b.

	Causal convolutions for images
	References

