Many applications require the automatic extraction of “refined” information from raw signal (e.g. image recognition, automatic speech processing, natural language processing, robotic control, geometry reconstruction).
Our brain is so good at interpreting visual information that the “semantic gap” is hard to assess intuitively.

This is a horse

```python
>>> from torchvision.datasets import CIFAR10
>>> cifar = CIFAR10('./data/cifar10/', train=True, download=True)
Files already downloaded and verified
>>> x = torch.from_numpy(cifar.data)[43].permute(2, 0, 1)
>>> x[:, :4, :8]
tensor([[ 99, 98, 100, 103, 107, 108, 110],
        [100, 100, 102, 105, 109, 110, 112],
        [104, 104, 106, 109, 111, 112, 114, 116],
        [109, 109, 111, 113, 116, 117, 118, 120]],
       [[166, 165, 167, 169, 171, 172, 173, 175],
        [166, 164, 167, 169, 171, 172, 174],
        [169, 167, 170, 171, 173, 174, 176],
        [170, 169, 172, 173, 175, 176, 177, 178]],
       [[198, 196, 199, 200, 200, 202, 203, 204],
        [195, 194, 197, 197, 199, 200, 201],
        [197, 195, 198, 198, 198, 199, 201, 202],
        [197, 196, 199, 198, 198, 199, 200, 201]], dtype=torch.uint8)
```
Extracting semantic automatically requires models of extreme complexity, which cannot be designed by hand.

Techniques used in practice consist of

1. defining a parametric model, and
2. optimizing its parameters by “making it work” on training data.

This is similar to biological systems for which the model (e.g. brain structure) is DNA-encoded, and parameters (e.g. synaptic weights) are tuned through experiences.

Deep learning encompasses software technologies to scale-up to billions of model parameters and as many training examples.

There are strong connections between standard statistical modeling and machine learning.

Classical ML methods combine a “learnable” model from statistics (e.g. “linear regression”) with prior knowledge in pre-processing.

“Artificial neural networks” pre-dated these approaches, and do not follow this dichotomy. They consist of “deep” stacks of parametrized processing.
From artificial neural networks to “Deep Learning”

Networks of “Threshold Logic Unit”

(McCulloch and Pitts, 1943)
1949 – Donald Hebb proposes the Hebbian Learning principle.
1951 – Marvin Minsky creates the first ANN (Hebbian learning, 40 neurons).
1958 – Frank Rosenblatt creates a perceptron to classify 20×20 images.
1959 – David H. Hubel and Torsten Wiesel demonstrate orientation selectivity and columnar organization in the cat’s visual cortex.
1982 – Paul Werbos proposes back-propagation for ANNs.

Neocognitron

Follows Hubel and Wiesel’s results.

(Fukushima, 1980)
Network for the T-C problem

Trained with back-prop.

(Rumelhart et al., 1988)

LeNet family

10 output units

layer H3
30 hidden units

layer H2
12 x 16 = 192 hidden units

layer H1
12 x 64 = 768 hidden units

256 input units

fully connected
~ 300 links

fully connected
~ 6000 links

~ 40,000 links from 12 kernels
5 x 5 x 8

~20,000 links from 12 kernels
5 x 5

(LeCun et al., 1989)
AlexNet

GoogLeNet

(Krizhevsky et al., 2012)

(Szegedy et al., 2015)
Deep learning is built on a natural generalization of a neural network: a graph of tensor operators, taking advantage of

- the chain rule (aka “back-propagation”),
- stochastic gradient descent,
- convolutions,
- parallel operations on GPUs.

This does not differ much from networks from the 90s.
This generalization allows to design complex networks of operators dealing with images, sound, text, sequences, etc. and to train them end-to-end.

(Yeung et al., 2015)

ImageNet Large Scale Visual Recognition Challenge.

1000 categories, > 1M images

(http://image-net.org/challenges/LSVRC/2014/browse-synsets)
Errors

Human performance

(Gershgorn, 2017)

References

D. Gershgorn. The data that transformed AI research—and possibly the world, July 2017.

