X-Git-Url: https://fleuret.org/cgi-bin/gitweb/gitweb.cgi?p=mtp.git;a=blobdiff_plain;f=mtp_graph.cc;h=dc383210e450711218fc69232d112320d61acc28;hp=5371732a03e9c85e3b357f16464e36773535a0b7;hb=23dae2d97cfbc14f63d3d2c9050d3d4f1ef7bd66;hpb=6c727bc27f1b594b5f3e5a756a0a01c3cb9b1cec diff --git a/mtp_graph.cc b/mtp_graph.cc index 5371732..dc38321 100644 --- a/mtp_graph.cc +++ b/mtp_graph.cc @@ -24,6 +24,7 @@ #include "mtp_graph.h" +#include #include using namespace std; @@ -43,17 +44,18 @@ public: class Vertex { public: - Edge *leaving_edges; scalar_t distance_from_source; Edge *pred_edge_toward_source; - int last_change; // Used to mark which edges have already been - // processed in some methods + Edge *leaving_edge_list_root; + Vertex **heap_slot; Vertex(); inline void add_leaving_edge(Edge *e); inline void del_leaving_edge(Edge *e); + inline void decrease_distance_in_heap(Vertex **heap); + inline void increase_distance_in_heap(Vertex **heap, Vertex **heap_bottom); }; ////////////////////////////////////////////////////////////////////// @@ -63,27 +65,27 @@ void Edge::invert() { positivized_length = - positivized_length; origin_vertex->del_leaving_edge(this); terminal_vertex->add_leaving_edge(this); - Vertex *t = terminal_vertex; - terminal_vertex = origin_vertex; - origin_vertex = t; + swap(terminal_vertex, origin_vertex); } ////////////////////////////////////////////////////////////////////// Vertex::Vertex() { - leaving_edges = 0; + leaving_edge_list_root = 0; } void Vertex::add_leaving_edge(Edge *e) { - e->next_leaving_edge = leaving_edges; + e->next_leaving_edge = leaving_edge_list_root; e->pred_leaving_edge = 0; - if(leaving_edges) { leaving_edges->pred_leaving_edge = e; } - leaving_edges = e; + if(leaving_edge_list_root) { + leaving_edge_list_root->pred_leaving_edge = e; + } + leaving_edge_list_root = e; } void Vertex::del_leaving_edge(Edge *e) { - if(e == leaving_edges) { - leaving_edges = e->next_leaving_edge; + if(e == leaving_edge_list_root) { + leaving_edge_list_root = e->next_leaving_edge; } if(e->pred_leaving_edge) { e->pred_leaving_edge->next_leaving_edge = e->next_leaving_edge; @@ -93,6 +95,53 @@ void Vertex::del_leaving_edge(Edge *e) { } } +void Vertex::decrease_distance_in_heap(Vertex **heap) { + Vertex **p, **h; + // There is some beauty in that + h = heap_slot; + while(h > heap && + (p = heap + (h - heap + 1) / 2 - 1, + (*p)->distance_from_source > (*h)->distance_from_source)) { + swap(*p, *h); + swap((*p)->heap_slot, (*h)->heap_slot); + h = p; + } +} + +void Vertex::increase_distance_in_heap(Vertex **heap, Vertex **heap_bottom) { + Vertex **c1, **c2, **h; + // omg, that's beautiful + h = heap_slot; + while(c1 = heap + 2 * (h - heap) + 1, + c1 < heap_bottom && + (c2 = c1 + 1, + (*c1)->distance_from_source < (*h)->distance_from_source + || + (c2 < heap_bottom && (*c2)->distance_from_source < (*h)->distance_from_source) + )) { + if(c2 < heap_bottom && (*c2)->distance_from_source <= (*c1)->distance_from_source) { + swap(*c2, *h); + swap((*c2)->heap_slot, (*h)->heap_slot); + h = c2; + } else { + swap(*c1, *h); + swap((*c1)->heap_slot, (*h)->heap_slot); + h = c1; + } + } +} + +////////////////////////////////////////////////////////////////////// + +static int compare_vertices_on_distance(const void *v1, const void *v2) { + scalar_t delta = + (*((Vertex **) v1))->distance_from_source - + (*((Vertex **) v2))->distance_from_source; + if(delta < 0) return -1; + else if(delta > 0) return 1; + else return 0; +} + ////////////////////////////////////////////////////////////////////// MTPGraph::MTPGraph(int nb_vertices, int nb_edges, @@ -103,8 +152,8 @@ MTPGraph::MTPGraph(int nb_vertices, int nb_edges, _edges = new Edge[_nb_edges]; _vertices = new Vertex[_nb_vertices]; - _front = new Vertex *[_nb_vertices]; - _new_front = new Vertex *[_nb_vertices]; + _heap = new Vertex *[_nb_vertices]; + _dp_order = new Vertex *[_nb_vertices]; _source = &_vertices[source]; _sink = &_vertices[sink]; @@ -116,32 +165,97 @@ MTPGraph::MTPGraph(int nb_vertices, int nb_edges, _edges[e].terminal_vertex = _vertices + vertex_to[e]; } + for(int v = 0; v < _nb_vertices; v++) { + _heap[v] = &_vertices[v]; + _vertices[v].heap_slot = &_heap[v]; + } + paths = 0; nb_paths = 0; + + compute_dp_ranks(); + for(int v = 0; v < _nb_vertices; v++) { _dp_order[v] = &_vertices[v]; } + qsort(_dp_order, _nb_vertices, sizeof(Vertex *), compare_vertices_on_distance); } MTPGraph::~MTPGraph() { delete[] _vertices; + delete[] _dp_order; + delete[] _heap; delete[] _edges; - delete[] _front; - delete[] _new_front; for(int p = 0; p < nb_paths; p++) delete paths[p]; delete[] paths; } ////////////////////////////////////////////////////////////////////// +void MTPGraph::compute_dp_ranks() { + Vertex *v; + Edge *e; + + // This procedure computes for each node the longest link from the + // source and abort if the graph is not a DAG. It works by removing + // successively nodes without predecessor: At the first iteration it + // removes the source, then the nodes with incoming edge only from + // the source, etc. If it can remove all the nodes that way, the + // graph is a DAG. If at some point it can not remove node anymore + // and there are some remaining nodes, the graph is not a DAG. The + // rank of a node is the iteration at which is it removed, and we + // set the distance_from_source fields to this value. + + Vertex **with_predecessor = new Vertex *[_nb_vertices]; + + // All the nodes are with_predecessor at first + for(int k = 0; k < _nb_vertices; k++) { + _vertices[k].distance_from_source = 0; + with_predecessor[k] = &_vertices[k]; + } + + scalar_t rank = 1; + int nb_with_predecessor = _nb_vertices, pred_nb_with_predecessor; + + do { + // We set the distance_from_source field of all the vertices with incoming + // edges to the current rank value + for(int f = 0; f < nb_with_predecessor; f++) { + v = with_predecessor[f]; + for(e = v->leaving_edge_list_root; e; e = e->next_leaving_edge) { + e->terminal_vertex->distance_from_source = rank; + } + } + + pred_nb_with_predecessor = nb_with_predecessor; + nb_with_predecessor = 0; + + // We keep all the vertices with incoming nodes + for(int f = 0; f < pred_nb_with_predecessor; f++) { + v = with_predecessor[f]; + if(v->distance_from_source == rank) { + with_predecessor[nb_with_predecessor++] = v; + } + } + + rank++; + } while(nb_with_predecessor < pred_nb_with_predecessor); + + delete[] with_predecessor; + + if(nb_with_predecessor > 0) { + cerr << __FILE__ << ": The graph is not a DAG." << endl; + abort(); + } +} + +////////////////////////////////////////////////////////////////////// + void MTPGraph::print(ostream *os) { for(int k = 0; k < _nb_edges; k++) { Edge *e = _edges + k; (*os) << e->origin_vertex - _vertices - << " -> " - << e->terminal_vertex - _vertices - << " " - << e->length; - if(e->occupied) { - (*os) << " *"; - } + << " -> " + << e->terminal_vertex - _vertices + << " (" << e->length << ")"; + if(e->occupied) { (*os) << " *"; } (*os) << endl; } } @@ -187,130 +301,89 @@ void MTPGraph::force_positivized_lengths() { Edge *e = _edges + k; if(e->positivized_length < 0) { - #ifdef VERBOSE - if((e->origin_vertex->last_change < 0 && e->terminal_vertex->last_change >= 0) || - (e->origin_vertex->last_change >= 0 && e->terminal_vertex->last_change < 0)) { - cout << "Inconsistent non-connexity (this should never happen)." << endl; - abort(); - } - if(e->origin_vertex->last_change >= 0 && - e->terminal_vertex->last_change >= 0 && - e->positivized_length < 0) { - residual_error -= e->positivized_length; - max_error = max(max_error, - e->positivized_length); - } + residual_error -= e->positivized_length; + max_error = max(max_error, - e->positivized_length); #endif e->positivized_length = 0.0; } } #ifdef VERBOSE - cerr << "residual_error " << residual_error << " max_error " << residual_error << endl; + cerr << __FILE__ << ": residual_error " << residual_error << " max_error " << residual_error << endl; #endif } -int MTPGraph::is_dag() { - Vertex *v; +void MTPGraph::dp_compute_distances() { + Vertex *v, *tv; Edge *e; + scalar_t d; - // We put everybody in the front for(int k = 0; k < _nb_vertices; k++) { - _vertices[k].last_change = -1; - _front[k] = &_vertices[k]; + _vertices[k].distance_from_source = FLT_MAX; + _vertices[k].pred_edge_toward_source = 0; } - int iteration = 0; - int front_size = _nb_vertices, pred_front_size; - - do { - // We set the last_change field of all the vertices with incoming - // edges to the current iteration value - for(int f = 0; f < front_size; f++) { - v = _front[f]; - for(e = v->leaving_edges; e; e = e->next_leaving_edge) { - e->terminal_vertex->last_change = iteration; - } - } - - pred_front_size = front_size; - front_size = 0; + _source->distance_from_source = 0; - // We keep all the vertices with incoming nodes - for(int f = 0; f < pred_front_size; f++) { - v = _front[f]; - if(v->last_change == iteration) { - _front[front_size++] = v; + for(int k = 0; k < _nb_vertices; k++) { + v = _dp_order[k]; + for(e = v->leaving_edge_list_root; e; e = e->next_leaving_edge) { + d = v->distance_from_source + e->positivized_length; + tv = e->terminal_vertex; + if(d < tv->distance_from_source) { + tv->distance_from_source = d; + tv->pred_edge_toward_source = e; } } - - iteration++; - } while(front_size < pred_front_size); - - return front_size == 0; + } } -// This method does not change the edge occupation. It only set +// This method does not change the edge occupation. It only sets // properly, for every vertex, the fields distance_from_source and // pred_edge_toward_source. void MTPGraph::find_shortest_path() { - Vertex **tmp_front; - Vertex *v, *tv; + Vertex *v, *tv, **last_slot; Edge *e; scalar_t d; -#ifdef DEBUG - if(is_dag()) { - cout << "find_shortest_path: DAG -> ok" << endl; - } else { - for(int e = 0; e < _nb_edges; e++) { - if(_edges[e].positivized_length < 0) abort(); - } - cout << "find_shortest_path: All positivized_length are positive -> ok" << endl; - } -#endif - for(int k = 0; k < _nb_vertices; k++) { _vertices[k].distance_from_source = FLT_MAX; _vertices[k].pred_edge_toward_source = 0; - _vertices[k].last_change = -1; } - int iteration = 0; - - int front_size = 0, new_front_size; - _front[front_size++] = _source; + _heap_size = _nb_vertices; _source->distance_from_source = 0; + _source->decrease_distance_in_heap(_heap); do { - new_front_size = 0; - - for(int f = 0; f < front_size; f++) { - v = _front[f]; - for(e = v->leaving_edges; e; e = e->next_leaving_edge) { - d = v->distance_from_source + e->positivized_length; - tv = e->terminal_vertex; - if(d < tv->distance_from_source) { - tv->distance_from_source = d; - tv->pred_edge_toward_source = e; - if(tv->last_change < iteration) { - _new_front[new_front_size++] = tv; - tv->last_change = iteration; - } - } + // Get the closest to the source + v = _heap[0]; + + // Remove it from the heap (swap it with the last_slot in the heap, and + // update the distance of that one) + _heap_size--; + last_slot = _heap + _heap_size; + swap(*_heap, *last_slot); swap((*_heap)->heap_slot, (*last_slot)->heap_slot); + _heap[0]->increase_distance_in_heap(_heap, _heap + _heap_size); + + // Now update the neighbors of the node currently closest to the + // source + for(e = v->leaving_edge_list_root; e; e = e->next_leaving_edge) { + d = v->distance_from_source + e->positivized_length; + tv = e->terminal_vertex; + if(d < tv->distance_from_source) { + ASSERT(tv->heap_slot - _heap < _heap_size); + tv->distance_from_source = d; + tv->pred_edge_toward_source = e; + tv->decrease_distance_in_heap(_heap); } } - - tmp_front = _new_front; _new_front = _front; _front = tmp_front; - - front_size = new_front_size; - - iteration++; - } while(front_size > 0); + } while(_heap_size > 0); } void MTPGraph::find_best_paths(scalar_t *lengths) { - scalar_t total_length; + scalar_t shortest_path_length; Vertex *v; Edge *e; @@ -320,17 +393,21 @@ void MTPGraph::find_best_paths(scalar_t *lengths) { _edges[e].positivized_length = _edges[e].length; } - // We call find_shortest_path here to set properly the distances to - // the source, so that we can make all the edge lengths positive at - // the first iteration. - find_shortest_path(); + // Compute the distance of all the nodes from the source by just + // visiting them in the proper DAG ordering we computed when + // building the graph + dp_compute_distances(); do { + // Use the current distance from the source to make all edge + // lengths positive update_positivized_lengths(); + // Fix numerical errors force_positivized_lengths(); + find_shortest_path(); - total_length = 0.0; + shortest_path_length = 0.0; // Do we reach the sink? if(_sink->pred_edge_toward_source) { @@ -338,13 +415,13 @@ void MTPGraph::find_best_paths(scalar_t *lengths) { // original edge lengths v = _sink; while(v->pred_edge_toward_source) { - total_length += v->pred_edge_toward_source->length; + shortest_path_length += v->pred_edge_toward_source->length; v = v->pred_edge_toward_source->origin_vertex; } // If that length is negative - if(total_length < 0.0) { + if(shortest_path_length < 0.0) { #ifdef VERBOSE - cerr << "Found a path of length " << total_length << endl; + cerr << __FILE__ << ": Found a path of length " << shortest_path_length << endl; #endif // Invert all the edges along the best path v = _sink; @@ -359,7 +436,7 @@ void MTPGraph::find_best_paths(scalar_t *lengths) { } } - } while(total_length < 0.0); + } while(shortest_path_length < 0.0); // Put back the graph in its original state (i.e. invert edges which // have been inverted in the process) @@ -385,18 +462,18 @@ int MTPGraph::retrieve_one_path(Edge *e, Path *path) { } else l++; nb_occupied_next = 0; - for(f = e->terminal_vertex->leaving_edges; f; f = f->next_leaving_edge) { + for(f = e->terminal_vertex->leaving_edge_list_root; f; f = f->next_leaving_edge) { if(f->occupied) { nb_occupied_next++; next = f; } } #ifdef DEBUG if(nb_occupied_next == 0) { - cerr << "retrieve_one_path: Non-sink end point." << endl; + cerr << __FILE__ << ": retrieve_one_path: Non-sink end point." << endl; abort(); } else if(nb_occupied_next > 1) { - cerr << "retrieve_one_path: Non node-disjoint paths." << endl; + cerr << __FILE__ << ": retrieve_one_path: Non node-disjoint paths." << endl; abort(); } #endif @@ -420,14 +497,14 @@ void MTPGraph::retrieve_disjoint_paths() { delete[] paths; nb_paths = 0; - for(e = _source->leaving_edges; e; e = e->next_leaving_edge) { + for(e = _source->leaving_edge_list_root; e; e = e->next_leaving_edge) { if(e->occupied) { nb_paths++; } } paths = new Path *[nb_paths]; p = 0; - for(e = _source->leaving_edges; e; e = e->next_leaving_edge) { + for(e = _source->leaving_edge_list_root; e; e = e->next_leaving_edge) { if(e->occupied) { l = retrieve_one_path(e, 0); paths[p] = new Path(l);