From d62602e1d7f3ae1c7c2e0ab6f6751ebbc3b06047 Mon Sep 17 00:00:00 2001 From: Francois Fleuret Date: Fri, 1 Jul 2022 10:01:12 +0200 Subject: [PATCH] Add cross-attention to QKVAttention. --- mygpt.py | 15 ++++++++------- 1 file changed, 8 insertions(+), 7 deletions(-) diff --git a/mygpt.py b/mygpt.py index 080083a..4951460 100755 --- a/mygpt.py +++ b/mygpt.py @@ -41,7 +41,8 @@ class PositionalEncoding(nn.Module): ############################## class QKVAttention(nn.Module): - def __init__(self, dim_in, dim_qk, dim_v, nb_heads = 1, causal = False, attention_dropout = 0.0): + def __init__(self, dim_in, dim_qk, dim_v, + nb_heads = 1, causal = False, attention_dropout = 0.0): super().__init__() def randw(*d): @@ -53,12 +54,12 @@ class QKVAttention(nn.Module): self.causal = causal self.attention_dropout = attention_dropout - def forward(self, x): - q = torch.einsum('ntc,hdc->nhtd', x, self.w_q) - k = torch.einsum('ntc,hdc->nhtd', x, self.w_k) - v = torch.einsum('ntc,hdc->nhtd', x, self.w_v) - r = math.sqrt(q.size(3)) - a = torch.einsum('nhtd,nhsd->nhts', q, k).div(r) + def forward(self, x_q, x_kv = None): + if x_kv is None: x_kv = x_q + q = torch.einsum('ntc,hdc->nhtd', x_q, self.w_q) + k = torch.einsum('ntc,hdc->nhtd', x_kv, self.w_k) + v = torch.einsum('ntc,hdc->nhtd', x_kv, self.w_v) + a = torch.einsum('nhtd,nhsd->nhts', q, k) / math.sqrt(q.size(3)) if self.causal: mask = torch.tril(q.new_ones(a.size(2), a.size(3)))[None, None, :, :] == 0 a = a.masked_fill(mask, float('-inf')) -- 2.39.5