From 5aee50805cfad1dd49bbf30b30fe65b05e03de78 Mon Sep 17 00:00:00 2001 From: =?utf8?q?Fran=C3=A7ois=20Fleuret?= Date: Fri, 7 Jul 2023 12:54:34 +0200 Subject: [PATCH] Update. --- expr.py | 3 +- main.py | 10 ++++- tasks.py | 125 +++++++++++-------------------------------------------- 3 files changed, 36 insertions(+), 102 deletions(-) diff --git a/expr.py b/expr.py index e073dca..818360b 100755 --- a/expr.py +++ b/expr.py @@ -63,6 +63,7 @@ def extract_results(seq): def generate_sequences(nb, nb_variables=5, length=20, randomize_length=False): + assert nb_variables <= 26 sequences = [] for n in range(nb): result = None @@ -87,7 +88,7 @@ if __name__ == "__main__": import time start_time = time.perf_counter() - sequences = generate_sequences(1000) + sequences = generate_sequences(1000, length=30) end_time = time.perf_counter() for s in sequences[:10]: print(s) diff --git a/main.py b/main.py index df3f154..003028a 100755 --- a/main.py +++ b/main.py @@ -383,20 +383,28 @@ train_set_perplexity = math.exp(entropy) train_examples = {} + for input in task.batches(split="train"): assert input.dim() == 2 and input.dtype == torch.int64 for x in input: train_examples[x.sum().item()] = x +nb_total, nb_collisions = 0, 0 for input in task.batches(split="test"): assert input.dim() == 2 and input.dtype == torch.int64 for x in input: + nb_total += 1 y = train_examples.get(x.sum().item()) if y is not None: - assert x.size() != y.size() or (x - y).abs().sum() > 0 + if x.size() == y.size() and (x - y).abs().sum() == 0: + nb_collisions += 1 del train_examples +log_string( + f"data_check {nb_collisions*100/nb_total:.02f}% ({nb_collisions}/{nb_total}) of test samples are in the train set" +) + ############################## if args.learning_rate_schedule == "cos": diff --git a/tasks.py b/tasks.py index 0f3aaec..affc8cd 100755 --- a/tasks.py +++ b/tasks.py @@ -82,86 +82,6 @@ class PicoCLVR(Task): a, b = (i == 0).nonzero().max(), (i == i.max()).nonzero().min() return z[:, a:b] - ###################### - # Not the cleanest part of the code - - # Extract the last image of each sequence, from the last - # included, and set to all the tokens from the beginning of - # that image to the end - def excise_last_image(self, input): - t_img, t_nul = self.token2id[""], self.token2id[""] - nb_img_tokens = self.height * self.width + 1 - - input = input.clone() - t = (input == t_img).long() - tail_masks = (t.cumsum(dim=1) == t.sum(dim=1, keepdim=True)).long() - i = (t * tail_masks).nonzero(as_tuple=True) - j = ( - i[0][:, None], - i[1][:, None] + torch.arange(nb_img_tokens, device=input.device)[None, :], - ) - images = self.trim(input[j]) - input[j] = t_nul - loss_masks = 1 - tail_masks - input, loss_masks = self.trim((input, loss_masks)) - return input, loss_masks, images - - def add_true_image(self, input, images, loss_masks): - t_nul = self.token2id[""] - nb_img_tokens = self.height * self.width + 1 - input = F.pad(input, (0, nb_img_tokens), value=t_nul) - loss_masks = F.pad(loss_masks, (0, nb_img_tokens), value=0) - t = (input == t_nul).long() - i = (t.cumsum(dim=1) == 1).nonzero(as_tuple=True) - j = ( - i[0][:, None], - i[1][:, None] + torch.arange(nb_img_tokens, device=input.device)[None, :], - ) - input[j] = images - loss_masks[j] = 1 - input, loss_masks = self.trim((input, loss_masks)) - return input, loss_masks - - def add_generated_image(self, input, loss_masks, model, deterministic_synthesis): - t_img, t_nul = self.token2id[""], self.token2id[""] - nb_img_tokens = self.height * self.width + 1 - - input = F.pad(input, (0, nb_img_tokens), value=t_nul) - loss_masks = F.pad(loss_masks, (0, nb_img_tokens), value=0) - t = (input == t_nul).long() - i = (t.cumsum(dim=1) == 1).nonzero(as_tuple=True) - input[i] = t_img - - j = ( - i[0][:, None], - i[1][:, None] - + 1 - + torch.arange(nb_img_tokens - 1, device=input.device)[None, :], - ) - ar_masks = input.new_zeros(input.size(), dtype=torch.int64) - ar_masks[j] = 1 - forbidden_tokens = ( - torch.arange(self.vocabulary_size(), device=input.device) == t_nul - ) - with torch.autograd.no_grad(): - t = model.training - model.eval() - masked_inplace_autoregression( - model, - self.batch_size, - input, - ar_masks, - deterministic_synthesis, - forbidden_tokens, - progress_bar_desc=None, - device=self.device, - ) - model.train(t) - - input, loss_masks = self.trim((input, loss_masks)) - - return input, loss_masks - ###################### def __init__( @@ -193,16 +113,6 @@ class PicoCLVR(Task): self.pruner_train = pruner_train self.pruner_eval = pruner_eval - param = { - "nb_train_samples": nb_train_samples, - "nb_test_samples": nb_test_samples, - "height": height, - "width": width, - "nb_colors": nb_colors, - "batch_size": batch_size, - "rng_state": list(torch.get_rng_state()), - } - if logger is not None: logger( f"generating {nb_train_samples+nb_test_samples} samples (can take some time)" @@ -225,6 +135,7 @@ class PicoCLVR(Task): tokens.sort() self.token2id = dict([(t, n) for n, t in enumerate(tokens)]) self.id2token = dict([(n, t) for n, t in enumerate(tokens)]) + self.t_img, self.t_nul = self.token2id[""], self.token2id[""] # Tokenize the train and test sets self.train_input = self.tensorize(self.train_descr) @@ -253,11 +164,20 @@ class PicoCLVR(Task): dynamic_ncols=True, desc=f"test-properties", ): - tape, loss_masks, _ = self.excise_last_image(input) - tape, loss_masks = self.add_generated_image( - tape, loss_masks, model, deterministic_synthesis + result = input.clone() + ar_mask = (result == self.t_img).long().cumsum(dim=1).clamp(max=1) + result = (1 - ar_mask) * result + ar_mask * self.t_nul + masked_inplace_autoregression( + model, + self.batch_size, + result, + ar_mask, + deterministic_synthesis, + progress_bar_desc=None, + device=self.device, ) - result_descr = self.detensorize(tape) + + result_descr = self.detensorize(result) np = picoclvr.nb_properties( result_descr, height=self.height, @@ -302,14 +222,19 @@ class PicoCLVR(Task): "red below yellow yellow below green green below blue red right yellow left green right blue left", "green bottom yellow bottom green left of blue yellow right of blue blue top", ]: - primer += [primer_descr] * nb_per_primer + primer += [primer_descr + " "] * nb_per_primer - tape = self.tensorize(primer) - loss_masks = 1 - (tape == self.token2id[""]).long() - tape, loss_masks = self.add_generated_image( - tape, loss_masks, model, deterministic_synthesis + result = self.tensorize(primer) + ar_mask = (result == self.t_nul).long() + masked_inplace_autoregression( + model, + self.batch_size, + result, + ar_mask, + deterministic_synthesis, + device=self.device, ) - result_descr = self.detensorize(tape) + result_descr = self.detensorize(result) np = picoclvr.nb_properties(result_descr, height=self.height, width=self.width) -- 2.39.5