From 0c911965bff87cc3dd38520260433b640794e88f Mon Sep 17 00:00:00 2001 From: =?utf8?q?Fran=C3=A7ois=20Fleuret?= Date: Wed, 10 Jan 2024 08:43:27 +0100 Subject: [PATCH] Update. --- mygpt.py | 16 ++++++++-------- 1 file changed, 8 insertions(+), 8 deletions(-) diff --git a/mygpt.py b/mygpt.py index 17f2f6d..ed4b2a7 100755 --- a/mygpt.py +++ b/mygpt.py @@ -540,6 +540,9 @@ class Caterpillar(nn.Module): self.cache_Y = X.new_zeros(N, T, DM) + V = torch.einsum("ntc,hdc->nhtd", X, self.w_V) + K = torch.einsum("ntc,hdc->nhtd", X, self.w_K) + ###################################################################### # Compute the recurrent state @@ -558,24 +561,21 @@ class Caterpillar(nn.Module): G = G / G.sum(1, keepdim=True).clamp(min=1) - if self.training and self.proba_gate_dropout > 0.0: - warnings.warn("gate dropout", RuntimeWarning) - epsilon = 0.5 - - V = torch.einsum("ntc,hdc->nhtd", X, self.w_V) - K = torch.einsum("ntc,hdc->nhtd", X, self.w_K) - # We prepare the arguments for the parallel scan A = 1 - G.sum(1) gated_V = torch.einsum("nhet,nhtd->netd", G, V) gated_K = torch.einsum("nhet,nhtd->netd", G, K) - # Initial recurrent state + # We start from cached values, which matters in inference init_rec_V = self.rec_V[:, :, t0 - CL : t0] init_rec_K = self.rec_K[:, :, t0 - CL : t0] + if self.training and self.proba_gate_dropout > 0.0: + warnings.warn("gate dropout", RuntimeWarning) + epsilon = 0.5 + ################################################################# # Associative scan -- 2.39.5