From: François Fleuret Date: Sat, 22 Jun 2024 08:20:06 +0000 (+0200) Subject: Update. X-Git-Url: https://fleuret.org/cgi-bin/gitweb/gitweb.cgi?a=commitdiff_plain;h=ef2311240c7a683e3e0a750827e3e350c3a96c4f;p=culture.git Update. --- diff --git a/world.py b/world.py index 118a470..a5e9601 100755 --- a/world.py +++ b/world.py @@ -18,7 +18,6 @@ from torch.nn import functional as F colors = torch.tensor( [ [255, 255, 255], - [0, 0, 0], [255, 0, 0], [0, 128, 0], [0, 0, 255], @@ -27,7 +26,13 @@ colors = torch.tensor( ] ) -token2char = "_X" + "".join([str(n) for n in range(len(colors) - 2)]) + ">" +token_background = 0 +first_fish_token = 1 +nb_fish_tokens = len(colors) - 1 +token_forward = first_fish_token + nb_fish_tokens +token_backward = token_forward + 1 + +token2char = "_" + "".join([str(n) for n in range(len(colors) - 1)]) + "><" def generate( @@ -37,13 +42,17 @@ def generate( max_nb_obj=2, nb_iterations=2, ): - f_start = torch.zeros(nb, height, width, dtype=torch.int64) - f_end = torch.zeros(nb, height, width, dtype=torch.int64) - n = torch.arange(f_start.size(0)) + pairs = [] for n in tqdm.tqdm(range(nb), dynamic_ncols=True, desc="world generation"): + f_start = torch.zeros(height, width, dtype=torch.int64) + f_end = torch.zeros(height, width, dtype=torch.int64) + n = torch.arange(f_start.size(0)) + nb_fish = torch.randint(max_nb_obj, (1,)).item() + 1 - for c in torch.randperm(colors.size(0) - 2)[:nb_fish].sort().values: + for c in ( + (torch.randperm(nb_fish_tokens) + first_fish_token)[:nb_fish].sort().values + ): i, j = ( torch.randint(height - 2, (1,))[0] + 1, torch.randint(width - 2, (1,))[0] + 1, @@ -51,10 +60,10 @@ def generate( vm = torch.randint(4, (1,))[0] vi, vj = (vm // 2) * (2 * (vm % 2) - 1), (1 - vm // 2) * (2 * (vm % 2) - 1) - f_start[n, i, j] = c + 2 - f_start[n, i - vi, j - vj] = c + 2 - f_start[n, i + vj, j - vi] = c + 2 - f_start[n, i - vj, j + vi] = c + 2 + f_start[i, j] = c + f_start[i - vi, j - vj] = c + f_start[i + vj, j - vi] = c + f_start[i - vj, j + vi] = c for l in range(nb_iterations): i += vi @@ -66,41 +75,56 @@ def generate( i += vi j += vj - f_end[n, i, j] = c + 2 - f_end[n, i - vi, j - vj] = c + 2 - f_end[n, i + vj, j - vi] = c + 2 - f_end[n, i - vj, j + vi] = c + 2 - - return torch.cat( - [ - f_end.flatten(1), - torch.full((f_end.size(0), 1), len(colors)), - f_start.flatten(1), - ], - dim=1, - ) + f_end[i, j] = c + f_end[i - vi, j - vj] = c + f_end[i + vj, j - vi] = c + f_end[i - vj, j + vi] = c + + pairs.append((f_start, f_end)) + + result = [] + for p in pairs: + if torch.rand(1) < 0.5: + result.append( + torch.cat( + [p[0].flatten(), torch.tensor([token_forward]), p[1].flatten()], + dim=0, + )[None, :] + ) + else: + result.append( + torch.cat( + [p[1].flatten(), torch.tensor([token_backward]), p[0].flatten()], + dim=0, + )[None, :] + ) + return torch.cat(result, dim=0) -def sample2img(seq, height, width): + +def sample2img(seq, height, width, upscale=15): f_start = seq[:, : height * width].reshape(-1, height, width) - f_start = (f_start >= len(colors)).long() + (f_start < len(colors)).long() * f_start f_end = seq[:, height * width + 1 :].reshape(-1, height, width) - f_end = (f_end >= len(colors)).long() + (f_end < len(colors)).long() * f_end - - img_f_start, img_f_end = colors[f_start], colors[f_end] - - img = torch.cat( - [ - img_f_start, - torch.full( - (img_f_start.size(0), img_f_start.size(1), 1, img_f_start.size(3)), 1 - ), - img_f_end, - ], - dim=2, - ) - return img.permute(0, 3, 1, 2) + def mosaic(x, upscale): + x = x.reshape(-1, height, width) + m = torch.logical_and(x >= 0, x < first_fish_token + nb_fish_tokens).long() + x = colors[x * m].permute(0, 3, 1, 2) + s = x.shape + x = x[:, :, :, None, :, None].expand(-1, -1, -1, upscale, -1, upscale) + x = x.reshape(s[0], s[1], s[2] * upscale, s[3] * upscale) + + for n in range(m.size(0)): + for i in range(m.size(1)): + for j in range(m.size(2)): + if m[n, i, j] == 0: + for k in range(2, upscale - 2): + x[n, :, i * upscale + k, j * upscale + k] = 0 + x[n, :, i * upscale + upscale - 1 - k, j * upscale + k] = 0 + + return x + + return torch.cat([mosaic(f_start, upscale), mosaic(f_end, upscale)], dim=3) def seq2str(seq): @@ -123,7 +147,12 @@ if __name__ == "__main__": print(seq2str(seq[:4])) + # m = (torch.rand(seq.size()) < 0.05).long() + # seq = (1 - m) * seq + m * 23 + img = sample2img(seq, height, width) print(img.size()) - torchvision.utils.save_image(img.float() / 255.0, "world.png", nrow=8, padding=2) + torchvision.utils.save_image( + img.float() / 255.0, "/tmp/world.png", nrow=8, padding=2 + )