From: François Fleuret Date: Sun, 24 Mar 2024 17:15:08 +0000 (+0100) Subject: Update. X-Git-Url: https://fleuret.org/cgi-bin/gitweb/gitweb.cgi?a=commitdiff_plain;h=e39282eef52a7f5ab6654b999009127569b1b599;p=culture.git Update. --- diff --git a/tasks.py b/tasks.py index 38c85ed..829eb24 100755 --- a/tasks.py +++ b/tasks.py @@ -1913,11 +1913,14 @@ class Escape(Task): self, n_epoch, model, result_dir, logger, deterministic_synthesis, nmax=1000 ): result = self.test_input[:100].clone() - t = torch.arange(result.size(1), device=result.device) + t = torch.arange(result.size(1), device=result.device)[None, :] + state_len = self.height * self.width - iteration_len = state_len + 3 + it_len = state_len + 3 # state / action / reward / lookahead_reward - def ar(): + def ar(result, ar_mask): + ar_mask = ar_mask.expand_as(result) + result *= 1 - ar_mask masked_inplace_autoregression( model, self.batch_size, @@ -1925,26 +1928,39 @@ class Escape(Task): ar_mask, deterministic_synthesis, device=self.device, + progress_bar_desc=None, ) - for u in range( - iteration_len, result.size(1) - iteration_len + 1, iteration_len + # Generate iteration after iteration + + for u in tqdm.tqdm( + range(it_len, result.size(1) - it_len + 1, it_len), desc="thinking" ): - # Put a lookahead reward to -1, sample the next state - result[:, u - 1] = (-1) + 1 + escape.first_lookahead_rewards_code + # Put the lookahead reward to -1 for the current iteration, + # sample the next state + s = -1 + result[:, u - 1] = s + 1 + escape.first_lookahead_rewards_code ar_mask = (t >= u).long() * (t < u + state_len).long() - ar_mask = ar_mask[None, :] - ar_mask = ar_mask.expand_as(result) - result *= 1 - ar_mask - ar() - - # Put a lookahead reward to +1, sample the action and reward - result[:, u - 1] = (1) + 1 + escape.first_lookahead_rewards_code - ar_mask = (t >= state_len).long() * (t < state_len + 2).long() - ar_mask = ar_mask[None, :] - ar_mask = ar_mask.expand_as(result) - result *= 1 - ar_mask - ar() + ar(result, ar_mask) + + # Put the lookahead reward to +1 for the current + # iteration, sample the action and reward + s = 1 + result[:, u - 1] = s + 1 + escape.first_lookahead_rewards_code + ar_mask = (t >= u + state_len).long() * (t < u + state_len + 2).long() + ar(result, ar_mask) + + # Fix the previous lookahead rewards in a consistant state + for v in range(0, u, it_len): + # Extract the rewards + r = result[:, range(v + state_len + 1 + it_len, u + it_len - 1, it_len)] + r = r - escape.first_lookahead_rewards_code - 1 + a = r.min(dim=1).values + b = r.max(dim=1).values + s = (a < 0).long() * a + (a >= 0).long() * b + result[:, v + state_len + 2] = ( + s + 1 + escape.first_lookahead_rewards_code + ) # Saving the generated sequences