From: François Fleuret Date: Tue, 11 Jul 2023 06:08:24 +0000 (+0200) Subject: Update. X-Git-Url: https://fleuret.org/cgi-bin/gitweb/gitweb.cgi?a=commitdiff_plain;h=c03e968adc7bf73df07a0fad89a835b98f4e76df;p=picoclvr.git Update. --- diff --git a/tasks.py b/tasks.py index 82d965b..75781ab 100755 --- a/tasks.py +++ b/tasks.py @@ -880,17 +880,22 @@ class Expr(Task): values_input = expr.extract_results([self.seq2str(s) for s in input]) values_result = expr.extract_results([self.seq2str(s) for s in result]) - for i, r in zip(values_input, values_result): - for n, vi in i.items(): - vr = r.get(n) - if vr is None or vr < 0: - nb_missed += 1 - else: - d = abs(vr - vi) - if d >= nb_delta.size(0): + filename = os.path.join(result_dir, f"expr_result_{n_epoch:04d}.txt") + + with open(filename, "w") as f: + for i, r in zip(values_input, values_result): + for n, vi in i.items(): + vr = r.get(n) + f.write(f"{vi} {-1 if vr is None else vr}\n") + + if vr is None or vr < 0: nb_missed += 1 else: - nb_delta[d] += 1 + d = abs(vr - vi) + if d >= nb_delta.size(0): + nb_missed += 1 + else: + nb_delta[d] += 1 ###################################################################### diff --git a/world.py b/world.py index e76c07f..a43eff9 100755 --- a/world.py +++ b/world.py @@ -1,6 +1,6 @@ #!/usr/bin/env python -import math +import math, sys import torch, torchvision @@ -30,7 +30,7 @@ class Box: return False -def scene2tensor(xh, yh, scene, size=64): +def scene2tensor(xh, yh, scene, size): width, height = size, size pixel_map = torch.ByteTensor(width, height, 4).fill_(255) data = pixel_map.numpy() @@ -85,7 +85,7 @@ def random_scene(): return scene -def sequence(nb_steps=10, all_frames=False): +def generate_sequence(nb_steps=10, all_frames=False, size=64): delta = 0.1 effects = [ (False, 0, 0), @@ -105,7 +105,7 @@ def sequence(nb_steps=10, all_frames=False): scene = random_scene() xh, yh = tuple(x.item() for x in torch.rand(2)) - frames.append(scene2tensor(xh, yh, scene)) + frames.append(scene2tensor(xh, yh, scene, size=size)) actions = torch.randint(len(effects), (nb_steps,)) change = False @@ -138,10 +138,10 @@ def sequence(nb_steps=10, all_frames=False): xh, yh = x, y if all_frames: - frames.append(scene2tensor(xh, yh, scene)) + frames.append(scene2tensor(xh, yh, scene, size=size)) if not all_frames: - frames.append(scene2tensor(xh, yh, scene)) + frames.append(scene2tensor(xh, yh, scene, size=size)) if change: break @@ -228,70 +228,109 @@ def patchify(x, factor, invert_size=None): ) -def train_encoder(input, device=torch.device("cpu")): - class SomeLeNet(nn.Module): - def __init__(self): - super().__init__() - self.conv1 = nn.Conv2d(1, 32, kernel_size=5) - self.conv2 = nn.Conv2d(32, 64, kernel_size=5) - self.fc1 = nn.Linear(256, 200) - self.fc2 = nn.Linear(200, 10) +class Normalizer(nn.Module): + def __init__(self, mu, std): + super().__init__() + self.mu = nn.Parameter(mu) + self.log_var = nn.Parameter(2*torch.log(std)) - def forward(self, x): - x = F.relu(F.max_pool2d(self.conv1(x), kernel_size=3)) - x = F.relu(F.max_pool2d(self.conv2(x), kernel_size=2)) - x = x.view(x.size(0), -1) - x = F.relu(self.fc1(x)) - x = self.fc2(x) - return x + def forward(self, x): + return (x-self.mu)/torch.exp(self.log_var/2.0) - ###################################################################### +class SignSTE(nn.Module): + def __init__(self): + super().__init__() - model = SomeLeNet() - - nb_parameters = sum(p.numel() for p in model.parameters()) + def forward(self, x): + # torch.sign() takes three values + s = (x >= 0).float() * 2 - 1 + if self.training: + u = torch.tanh(x) + return s + u - u.detach() + else: + return s + + +def train_encoder( + train_input, + dim_hidden=64, + block_size=16, + nb_bits_per_block=10, + lr_start=1e-3, lr_end=1e-5, + nb_epochs=50, + batch_size=25, + device=torch.device("cpu"), +): + mu, std = train_input.mean(), train_input.std() - print(f"nb_parameters {nb_parameters}") + encoder = nn.Sequential( + Normalizer(mu, std), + nn.Conv2d(3, dim_hidden, kernel_size=5, stride=1, padding=2), + nn.ReLU(), + nn.Conv2d(dim_hidden, dim_hidden, kernel_size=5, stride=1, padding=2), + nn.ReLU(), + nn.Conv2d(dim_hidden, dim_hidden, kernel_size=5, stride=1, padding=2), + nn.ReLU(), + nn.Conv2d(dim_hidden, dim_hidden, kernel_size=5, stride=1, padding=2), + nn.ReLU(), + nn.Conv2d(dim_hidden, dim_hidden, kernel_size=5, stride=1, padding=2), + nn.ReLU(), + nn.Conv2d( + dim_hidden, + nb_bits_per_block, + kernel_size=block_size, + stride=block_size, + padding=0, + ), + SignSTE(), + ) - optimizer = torch.optim.SGD(model.parameters(), lr=lr) - criterion = nn.CrossEntropyLoss() + decoder = nn.Sequential( + nn.ConvTranspose2d( + nb_bits_per_block, + dim_hidden, + kernel_size=block_size, + stride=block_size, + padding=0, + ), + nn.ReLU(), + nn.Conv2d(dim_hidden, dim_hidden, kernel_size=5, stride=1, padding=2), + nn.ReLU(), + nn.Conv2d(dim_hidden, dim_hidden, kernel_size=5, stride=1, padding=2), + nn.ReLU(), + nn.Conv2d(dim_hidden, dim_hidden, kernel_size=5, stride=1, padding=2), + nn.ReLU(), + nn.Conv2d(dim_hidden, 3, kernel_size=5, stride=1, padding=2), + ) - model.to(device) - criterion.to(device) + model = nn.Sequential(encoder, decoder) - train_input, train_targets = train_input.to(device), train_targets.to(device) - test_input, test_targets = test_input.to(device), test_targets.to(device) + nb_parameters = sum(p.numel() for p in model.parameters()) - mu, std = train_input.mean(), train_input.std() - train_input.sub_(mu).div_(std) - test_input.sub_(mu).div_(std) + print(f"nb_parameters {nb_parameters}") - start_time = time.perf_counter() + model.to(device) for k in range(nb_epochs): - acc_loss = 0.0 + lr=math.exp(math.log(lr_start) + math.log(lr_end/lr_start)/(nb_epochs-1)*k) + print(f"lr {lr}") + optimizer = torch.optim.Adam(model.parameters(), lr=lr) + acc_loss, nb_samples = 0.0, 0 - for input, targets in zip( - train_input.split(batch_size), train_targets.split(batch_size) - ): + for input in train_input.split(batch_size): output = model(input) - loss = criterion(output, targets) - acc_loss += loss.item() + loss = F.mse_loss(output, input) + acc_loss += loss.item() * input.size(0) + nb_samples += input.size(0) optimizer.zero_grad() loss.backward() optimizer.step() - nb_test_errors = 0 - for input, targets in zip( - test_input.split(batch_size), test_targets.split(batch_size) - ): - wta = model(input).argmax(1) - nb_test_errors += (wta != targets).long().sum() - test_error = nb_test_errors / test_input.size(0) - duration = time.perf_counter() - start_time + print(f"loss {k} {acc_loss/nb_samples}") + sys.stdout.flush() - print(f"loss {k} {duration:.02f}s {acc_loss:.02f} {test_error*100:.02f}%") + return encoder, decoder ###################################################################### @@ -300,15 +339,16 @@ if __name__ == "__main__": import time all_frames = [] - nb = 1000 + nb = 25000 start_time = time.perf_counter() for n in range(nb): - frames, actions = sequence(nb_steps=31) + frames, actions = generate_sequence(nb_steps=31) all_frames += frames end_time = time.perf_counter() print(f"{nb / (end_time - start_time):.02f} samples per second") input = torch.cat(all_frames, 0) + encoder, decoder = train_encoder(input) # x = patchify(input, 8) # y = x.reshape(x.size(0), -1) @@ -318,11 +358,15 @@ if __name__ == "__main__": # results = results.reshape(x.size()) # results = patchify(results, 8, input.size()) - print(f"{input.size()=} {results.size()=}") + z = encoder(input) + results = decoder(z) + + print(f"{input.size()=} {z.size()=} {results.size()=}") torchvision.utils.save_image(input[:64], "orig.png", nrow=8) + torchvision.utils.save_image(results[:64], "qtiz.png", nrow=8) - # frames, actions = sequence(nb_steps=31, all_frames=True) + # frames, actions = generate_sequence(nb_steps=31, all_frames=True) # frames = torch.cat(frames, 0) # torchvision.utils.save_image(frames, "seq.png", nrow=8)