From: François Fleuret Date: Thu, 23 Mar 2023 08:43:14 +0000 (+0100) Subject: Update X-Git-Url: https://fleuret.org/cgi-bin/gitweb/gitweb.cgi?a=commitdiff_plain;h=777e637e8e229e9323b6c2aa95e4bc66026b77af;p=beaver.git Update --- diff --git a/beaver.py b/beaver.py index 69116ea..dca97cc 100755 --- a/beaver.py +++ b/beaver.py @@ -186,7 +186,7 @@ def masked_inplace_autoregression(model, batch_size, input, ar_mask, order=None) ###################################################################### -def compute_perplexity(model, split="train"): +def compute_perplexity(model, fixed_len, split="train"): with torch.autograd.no_grad(): t = model.training model.eval() @@ -195,8 +195,9 @@ def compute_perplexity(model, split="train"): for input in task.batches(split=split): input = input.to(device) - input, order = shuffle(input, task.height * task.width) - output = model(mygpt.BracketedSequence(input), order=order).x + x, order = shuffle(input, fixed_len) + x = model(mygpt.BracketedSequence(x), order=order).x + output = reorder(x, order, back=True) loss = F.cross_entropy(output.transpose(1, 2), input) acc_loss += loss.item() * input.size(0) nb_samples += input.size(0) @@ -431,11 +432,11 @@ class TaskMaze(Task): ar_mask = result.new_zeros(result.size()) ar_mask[:, self.height * self.width :] = 1 result *= 1 - ar_mask - result, order = shuffle(result, self.height * self.width) + x, order = shuffle(result, self.height * self.width) masked_inplace_autoregression( - model, self.batch_size, result, ar_mask, order=order + model, self.batch_size, x, ar_mask, order=order ) - result = reorder(result, order, back=True) + result = reorder(x, order, back=True) mazes, paths = self.seq2map(result) nb_correct += maze.path_correctness(mazes, paths).long().sum() nb_total += mazes.size(0) @@ -582,8 +583,12 @@ log_string(f"learning_rate_schedule {learning_rate_schedule}") if nb_epochs_finished >= args.nb_epochs: n_epoch = nb_epochs_finished - train_perplexity = compute_perplexity(model, split="train") - test_perplexity = compute_perplexity(model, split="test") + train_perplexity = compute_perplexity( + model, fixed_len=task.height * task.width, split="train" + ) + test_perplexity = compute_perplexity( + model, fixed_len=task.height * task.width, split="test" + ) log_string( f"perplexity {n_epoch} train_set {train_set_perplexity} train_prediction {train_perplexity} test_prediction {test_perplexity}" @@ -613,8 +618,9 @@ for n_epoch in range(nb_epochs_finished, args.nb_epochs): for input in task.batches(split="train"): input = input.to(device) - input, order = shuffle(input, task.height * task.width) - output = model(mygpt.BracketedSequence(input), order=order).x + x, order = shuffle(input, task.height * task.width) + x = model(mygpt.BracketedSequence(x), order=order).x + output = reorder(x, order, back=True) loss = F.cross_entropy(output.transpose(1, 2), input) acc_train_loss += loss.item() * input.size(0) nb_train_samples += input.size(0) @@ -624,7 +630,9 @@ for n_epoch in range(nb_epochs_finished, args.nb_epochs): optimizer.step() train_perplexity = math.exp(min(100, acc_train_loss / nb_train_samples)) - test_perplexity = compute_perplexity(model, split="test") + test_perplexity = compute_perplexity( + model, fixed_len=task.height * task.width, split="test" + ) log_string( f"perplexity {n_epoch} train_set {train_set_perplexity} train_prediction {train_perplexity} test_prediction {test_perplexity}"