X-Git-Url: https://fleuret.org/cgi-bin/gitweb/gitweb.cgi?a=blobdiff_plain;f=world.py;h=aad0bfb9727a3757dd90a0bfcb56e74040c6e011;hb=d2844d7a2d09ef38dc6f62d5e131059cccc872c5;hp=a93684b0f6797d86a2b8d227abedd3c0b5610672;hpb=4b7407bbbd9636b89f663a6a9124e078a16aaef8;p=picoclvr.git diff --git a/world.py b/world.py index a93684b..aad0bfb 100755 --- a/world.py +++ b/world.py @@ -1,5 +1,10 @@ #!/usr/bin/env python +# Any copyright is dedicated to the Public Domain. +# https://creativecommons.org/publicdomain/zero/1.0/ + +# Written by Francois Fleuret + import math, sys, tqdm import torch, torchvision @@ -8,6 +13,8 @@ from torch import nn from torch.nn import functional as F import cairo +###################################################################### + class Box: nb_rgb_levels = 10 @@ -32,216 +39,9 @@ class Box: return False -def scene2tensor(xh, yh, scene, size): - width, height = size, size - pixel_map = torch.ByteTensor(width, height, 4).fill_(255) - data = pixel_map.numpy() - surface = cairo.ImageSurface.create_for_data( - data, cairo.FORMAT_ARGB32, width, height - ) - - ctx = cairo.Context(surface) - ctx.set_fill_rule(cairo.FILL_RULE_EVEN_ODD) - - for b in scene: - ctx.move_to(b.x * size, b.y * size) - ctx.rel_line_to(b.w * size, 0) - ctx.rel_line_to(0, b.h * size) - ctx.rel_line_to(-b.w * size, 0) - ctx.close_path() - ctx.set_source_rgba( - b.r / (Box.nb_rgb_levels - 1), - b.g / (Box.nb_rgb_levels - 1), - b.b / (Box.nb_rgb_levels - 1), - 1.0, - ) - ctx.fill() - - hs = size * 0.1 - ctx.set_source_rgba(0.0, 0.0, 0.0, 1.0) - ctx.move_to(xh * size - hs / 2, yh * size - hs / 2) - ctx.rel_line_to(hs, 0) - ctx.rel_line_to(0, hs) - ctx.rel_line_to(-hs, 0) - ctx.close_path() - ctx.fill() - - return ( - pixel_map[None, :, :, :3] - .flip(-1) - .permute(0, 3, 1, 2) - .long() - .mul(Box.nb_rgb_levels) - .floor_divide(256) - ) - - -def random_scene(): - scene = [] - colors = [ - ((Box.nb_rgb_levels - 1), 0, 0), - (0, (Box.nb_rgb_levels - 1), 0), - (0, 0, (Box.nb_rgb_levels - 1)), - ((Box.nb_rgb_levels - 1), (Box.nb_rgb_levels - 1), 0), - ( - (Box.nb_rgb_levels * 2) // 3, - (Box.nb_rgb_levels * 2) // 3, - (Box.nb_rgb_levels * 2) // 3, - ), - ] - - for k in range(10): - wh = torch.rand(2) * 0.2 + 0.2 - xy = torch.rand(2) * (1 - wh) - c = colors[torch.randint(len(colors), (1,))] - b = Box( - xy[0].item(), xy[1].item(), wh[0].item(), wh[1].item(), c[0], c[1], c[2] - ) - if not b.collision(scene): - scene.append(b) - - return scene - - -def generate_episode(nb_steps=10, size=64): - delta = 0.1 - effects = [ - (False, 0, 0), - (False, delta, 0), - (False, 0, delta), - (False, -delta, 0), - (False, 0, -delta), - (True, delta, 0), - (True, 0, delta), - (True, -delta, 0), - (True, 0, -delta), - ] - - while True: - frames = [] - - scene = random_scene() - xh, yh = tuple(x.item() for x in torch.rand(2)) - - frames.append(scene2tensor(xh, yh, scene, size=size)) - - actions = torch.randint(len(effects), (nb_steps,)) - change = False - - for a in actions: - g, dx, dy = effects[a] - if g: - for b in scene: - if b.x <= xh and b.x + b.w >= xh and b.y <= yh and b.y + b.h >= yh: - x, y = b.x, b.y - b.x += dx - b.y += dy - if ( - b.x < 0 - or b.y < 0 - or b.x + b.w > 1 - or b.y + b.h > 1 - or b.collision(scene) - ): - b.x, b.y = x, y - else: - xh += dx - yh += dy - change = True - else: - x, y = xh, yh - xh += dx - yh += dy - if xh < 0 or xh > 1 or yh < 0 or yh > 1: - xh, yh = x, y - - frames.append(scene2tensor(xh, yh, scene, size=size)) - - if change: - break - - return frames, actions - - ###################################################################### -# ||x_i - c_j||^2 = ||x_i||^2 + ||c_j||^2 - 2 -def sq2matrix(x, c): - nx = x.pow(2).sum(1) - nc = c.pow(2).sum(1) - return nx[:, None] + nc[None, :] - 2 * x @ c.t() - - -def update_centroids(x, c, nb_min=1): - _, b = sq2matrix(x, c).min(1) - b.squeeze_() - nb_resets = 0 - - for k in range(0, c.size(0)): - i = b.eq(k).nonzero(as_tuple=False).squeeze() - if i.numel() >= nb_min: - c[k] = x.index_select(0, i).mean(0) - else: - n = torch.randint(x.size(0), (1,)) - nb_resets += 1 - c[k] = x[n] - - return c, b, nb_resets - - -def kmeans(x, nb_centroids, nb_min=1): - if x.size(0) < nb_centroids * nb_min: - print("Not enough points!") - exit(1) - - c = x[torch.randperm(x.size(0))[:nb_centroids]] - t = torch.full((x.size(0),), -1) - n = 0 - - while True: - c, u, nb_resets = update_centroids(x, c, nb_min) - n = n + 1 - nb_changes = (u - t).sign().abs().sum() + nb_resets - t = u - if nb_changes == 0: - break - - return c, t - - -###################################################################### - - -def patchify(x, factor, invert_size=None): - if invert_size is None: - return ( - x.reshape( - x.size(0), # 0 - x.size(1), # 1 - factor, # 2 - x.size(2) // factor, # 3 - factor, # 4 - x.size(3) // factor, # 5 - ) - .permute(0, 2, 4, 1, 3, 5) - .reshape(-1, x.size(1), x.size(2) // factor, x.size(3) // factor) - ) - else: - return ( - x.reshape( - invert_size[0], # 0 - factor, # 1 - factor, # 2 - invert_size[1], # 3 - invert_size[2] // factor, # 4 - invert_size[3] // factor, # 5 - ) - .permute(0, 3, 1, 4, 2, 5) - .reshape(invert_size) - ) - - class Normalizer(nn.Module): def __init__(self, mu, std): super().__init__() @@ -259,6 +59,7 @@ class SignSTE(nn.Module): def forward(self, x): # torch.sign() takes three values s = (x >= 0).float() * 2 - 1 + if self.training: u = torch.tanh(x) return s + u - u.detach() @@ -266,16 +67,39 @@ class SignSTE(nn.Module): return s +class DiscreteSampler2d(nn.Module): + def __init__(self): + super().__init__() + + def forward(self, x): + s = (x >= x.max(-3, keepdim=True).values).float() + + if self.training: + u = x.softmax(dim=-3) + return s + u - u.detach() + else: + return s + + +def loss_H(binary_logits, h_threshold=1): + p = binary_logits.sigmoid().mean(0) + h = (-p.xlogy(p) - (1 - p).xlogy(1 - p)) / math.log(2) + h.clamp_(max=h_threshold) + return h_threshold - h.mean() + + def train_encoder( train_input, test_input, - depth=2, + depth, + nb_bits_per_token, dim_hidden=48, - nb_bits_per_token=10, + lambda_entropy=0.0, lr_start=1e-3, lr_end=1e-4, nb_epochs=10, batch_size=25, + logger=None, device=torch.device("cpu"), ): mu, std = train_input.float().mean(), train_input.float().std() @@ -336,14 +160,10 @@ def train_encoder( nb_parameters = sum(p.numel() for p in model.parameters()) - print(f"nb_parameters {nb_parameters}") + logger(f"vqae nb_parameters {nb_parameters}") model.to(device) - g5x5 = torch.exp(-torch.tensor([[-2.0, -1.0, 0.0, 1.0, 2.0]]) ** 2 / 2) - g5x5 = (g5x5.t() @ g5x5).view(1, 1, 5, 5) - g5x5 = g5x5 / g5x5.sum() - for k in range(nb_epochs): lr = math.exp( math.log(lr_start) + math.log(lr_end / lr_start) / (nb_epochs - 1) * k @@ -352,9 +172,10 @@ def train_encoder( acc_train_loss = 0.0 - for input in train_input.split(batch_size): + for input in tqdm.tqdm(train_input.split(batch_size), desc="vqae-train"): + input = input.to(device) z = encoder(input) - zq = z if k < 1 else quantizer(z) + zq = quantizer(z) output = decoder(zq) output = output.reshape( @@ -363,6 +184,9 @@ def train_encoder( train_loss = F.cross_entropy(output, input) + if lambda_entropy > 0: + train_loss = train_loss + lambda_entropy * loss_H(z, h_threshold=0.5) + acc_train_loss += train_loss.item() * input.size(0) optimizer.zero_grad() @@ -371,9 +195,10 @@ def train_encoder( acc_test_loss = 0.0 - for input in test_input.split(batch_size): + for input in tqdm.tqdm(test_input.split(batch_size), desc="vqae-test"): + input = input.to(device) z = encoder(input) - zq = z if k < 1 else quantizer(z) + zq = quantizer(z) output = decoder(zq) output = output.reshape( @@ -387,73 +212,274 @@ def train_encoder( train_loss = acc_train_loss / train_input.size(0) test_loss = acc_test_loss / test_input.size(0) - print(f"train_ae {k} lr {lr} train_loss {train_loss} test_loss {test_loss}") + logger(f"vqae train {k} lr {lr} train_loss {train_loss} test_loss {test_loss}") sys.stdout.flush() return encoder, quantizer, decoder -def generate_episodes(nb): - all_frames = [] - for n in tqdm.tqdm(range(nb), dynamic_ncols=True, desc="world-data"): - frames, actions = generate_episode(nb_steps=31) - all_frames += [ frames[0], frames[-1] ] - return torch.cat(all_frames, 0).contiguous() -def create_data_and_processors(nb_train_samples, nb_test_samples): - train_input = generate_episodes(nb_train_samples) - test_input = generate_episodes(nb_test_samples) - encoder, quantizer, decoder = train_encoder(train_input, test_input, nb_epochs=2) +###################################################################### - input = test_input[:64] - z = encoder(input.float()) - height, width = z.size(2), z.size(3) - zq = quantizer(z).long() - pow2=(2**torch.arange(zq.size(1), device=zq.device))[None,None,:] - seq = (zq.permute(0,2,3,1).clamp(min=0).reshape(zq.size(0),-1,zq.size(1)) * pow2).sum(-1) - print(f"{seq.size()=}") +def scene2tensor(xh, yh, scene, size): + width, height = size, size + pixel_map = torch.ByteTensor(width, height, 4).fill_(255) + data = pixel_map.numpy() + surface = cairo.ImageSurface.create_for_data( + data, cairo.FORMAT_ARGB32, width, height + ) - ZZ=zq + ctx = cairo.Context(surface) + ctx.set_fill_rule(cairo.FILL_RULE_EVEN_ODD) - zq = ((seq[:,:,None] // pow2)%2)*2-1 - zq = zq.reshape(zq.size(0), height, width, -1).permute(0,3,1,2) + for b in scene: + ctx.move_to(b.x * size, b.y * size) + ctx.rel_line_to(b.w * size, 0) + ctx.rel_line_to(0, b.h * size) + ctx.rel_line_to(-b.w * size, 0) + ctx.close_path() + ctx.set_source_rgba( + b.r / (Box.nb_rgb_levels - 1), + b.g / (Box.nb_rgb_levels - 1), + b.b / (Box.nb_rgb_levels - 1), + 1.0, + ) + ctx.fill() - print(ZZ[0]) - print(zq[0]) + hs = size * 0.1 + ctx.set_source_rgba(0.0, 0.0, 0.0, 1.0) + ctx.move_to(xh * size - hs / 2, yh * size - hs / 2) + ctx.rel_line_to(hs, 0) + ctx.rel_line_to(0, hs) + ctx.rel_line_to(-hs, 0) + ctx.close_path() + ctx.fill() - print("CHECK", (ZZ-zq).abs().sum()) + return ( + pixel_map[None, :, :, :3] + .flip(-1) + .permute(0, 3, 1, 2) + .long() + .mul(Box.nb_rgb_levels) + .floor_divide(256) + ) - results = decoder(zq.float()) - T = 0.1 - results = results.reshape( - results.size(0), -1, 3, results.size(2), results.size(3) - ).permute(0, 2, 3, 4, 1) - results = torch.distributions.categorical.Categorical(logits=results / T).sample() +def random_scene(nb_insert_attempts=3): + scene = [] + colors = [ + ((Box.nb_rgb_levels - 1), 0, 0), + (0, (Box.nb_rgb_levels - 1), 0), + (0, 0, (Box.nb_rgb_levels - 1)), + ((Box.nb_rgb_levels - 1), (Box.nb_rgb_levels - 1), 0), + ( + (Box.nb_rgb_levels * 2) // 3, + (Box.nb_rgb_levels * 2) // 3, + (Box.nb_rgb_levels * 2) // 3, + ), + ] - torchvision.utils.save_image( - input.float() / (Box.nb_rgb_levels - 1), "orig.png", nrow=8 + for k in range(nb_insert_attempts): + wh = torch.rand(2) * 0.2 + 0.2 + xy = torch.rand(2) * (1 - wh) + c = colors[torch.randint(len(colors), (1,))] + b = Box( + xy[0].item(), xy[1].item(), wh[0].item(), wh[1].item(), c[0], c[1], c[2] + ) + if not b.collision(scene): + scene.append(b) + + return scene + + +def generate_episode(steps, size=64): + delta = 0.1 + effects = [ + (False, 0, 0), + (False, delta, 0), + (False, 0, delta), + (False, -delta, 0), + (False, 0, -delta), + (True, delta, 0), + (True, 0, delta), + (True, -delta, 0), + (True, 0, -delta), + ] + + while True: + frames = [] + + scene = random_scene() + xh, yh = tuple(x.item() for x in torch.rand(2)) + + actions = torch.randint(len(effects), (len(steps),)) + nb_changes = 0 + + for s, a in zip(steps, actions): + if s: + frames.append(scene2tensor(xh, yh, scene, size=size)) + + grasp, dx, dy = effects[a] + + if grasp: + for b in scene: + if b.x <= xh and b.x + b.w >= xh and b.y <= yh and b.y + b.h >= yh: + x, y = b.x, b.y + b.x += dx + b.y += dy + if ( + b.x < 0 + or b.y < 0 + or b.x + b.w > 1 + or b.y + b.h > 1 + or b.collision(scene) + ): + b.x, b.y = x, y + else: + xh += dx + yh += dy + nb_changes += 1 + else: + x, y = xh, yh + xh += dx + yh += dy + if xh < 0 or xh > 1 or yh < 0 or yh > 1: + xh, yh = x, y + + if nb_changes > len(steps) // 3: + break + + return frames, actions + + +###################################################################### + + +def generate_episodes(nb, steps): + all_frames, all_actions = [], [] + for n in tqdm.tqdm(range(nb), dynamic_ncols=True, desc="world-data"): + frames, actions = generate_episode(steps) + all_frames += frames + all_actions += [actions[None, :]] + return torch.cat(all_frames, 0).contiguous(), torch.cat(all_actions, 0) + + +def create_data_and_processors( + nb_train_samples, + nb_test_samples, + mode, + nb_steps, + depth=3, + nb_bits_per_token=8, + nb_epochs=10, + device=torch.device("cpu"), + device_storage=torch.device("cpu"), + logger=None, +): + assert mode in ["first_last"] + + if mode == "first_last": + steps = [True] + [False] * (nb_steps + 1) + [True] + + if logger is None: + logger = lambda s: print(s) + + train_input, train_actions = generate_episodes(nb_train_samples, steps) + train_input, train_actions = train_input.to(device_storage), train_actions.to( + device_storage + ) + test_input, test_actions = generate_episodes(nb_test_samples, steps) + test_input, test_actions = test_input.to(device_storage), test_actions.to( + device_storage ) - torchvision.utils.save_image( - results.float() / (Box.nb_rgb_levels - 1), "qtiz.png", nrow=8 + encoder, quantizer, decoder = train_encoder( + train_input, + test_input, + depth=depth, + nb_bits_per_token=nb_bits_per_token, + lambda_entropy=1.0, + nb_epochs=nb_epochs, + logger=logger, + device=device, ) + encoder.train(False) + quantizer.train(False) + decoder.train(False) + + z = encoder(train_input[:1].to(device)) + pow2 = (2 ** torch.arange(z.size(1), device=device))[None, None, :] + z_h, z_w = z.size(2), z.size(3) + + logger(f"vqae input {train_input[0].size()} output {z[0].size()}") + + def frame2seq(input, batch_size=25): + seq = [] + p = pow2.to(device) + for x in input.split(batch_size): + x = x.to(device) + z = encoder(x) + ze_bool = (quantizer(z) >= 0).long() + output = ( + ze_bool.permute(0, 2, 3, 1).reshape( + ze_bool.size(0), -1, ze_bool.size(1) + ) + * p + ).sum(-1) + + seq.append(output) + + return torch.cat(seq, dim=0) + + def seq2frame(input, batch_size=25, T=1e-2): + frames = [] + p = pow2.to(device) + for seq in input.split(batch_size): + seq = seq.to(device) + zd_bool = (seq[:, :, None] // p) % 2 + zd_bool = zd_bool.reshape(zd_bool.size(0), z_h, z_w, -1).permute(0, 3, 1, 2) + logits = decoder(zd_bool * 2.0 - 1.0) + logits = logits.reshape( + logits.size(0), -1, 3, logits.size(2), logits.size(3) + ).permute(0, 2, 3, 4, 1) + output = torch.distributions.categorical.Categorical( + logits=logits / T + ).sample() + + frames.append(output) + + return torch.cat(frames, dim=0) + + return train_input, train_actions, test_input, test_actions, frame2seq, seq2frame ###################################################################### if __name__ == "__main__": - create_data_and_processors(250,100) + ( + train_input, + train_actions, + test_input, + test_actions, + frame2seq, + seq2frame, + ) = create_data_and_processors( + 25000, + 1000, + nb_epochs=5, + mode="first_last", + nb_steps=20, + ) - # train_input = generate_episodes(2500) - # test_input = generate_episodes(1000) + input = test_input[:256] - # encoder, quantizer, decoder = train_encoder(train_input, test_input) + seq = frame2seq(input) + output = seq2frame(seq) - # input = test_input[torch.randperm(test_input.size(0))[:64]] - # z = encoder(input.float()) - # zq = quantizer(z) - # results = decoder(zq) + torchvision.utils.save_image( + input.float() / (Box.nb_rgb_levels - 1), "orig.png", nrow=16 + ) - # T = 0.1 - # results = torch.distributions.categorical.Categorical(logits=results / T).sample() + torchvision.utils.save_image( + output.float() / (Box.nb_rgb_levels - 1), "qtiz.png", nrow=16 + )