X-Git-Url: https://fleuret.org/cgi-bin/gitweb/gitweb.cgi?a=blobdiff_plain;f=world.py;h=68f46de76b1bea49fd25936696a604d000d48600;hb=908351dd77e8a703fb55b32a209c2fca4f551669;hp=e76c07f7c5e75185bc89acc3ed23a419ec7a0d2e;hpb=9e62722596c40655041a0a812512115f1036c6fc;p=culture.git diff --git a/world.py b/world.py index e76c07f..68f46de 100755 --- a/world.py +++ b/world.py @@ -1,328 +1,320 @@ #!/usr/bin/env python -import math +# Any copyright is dedicated to the Public Domain. +# https://creativecommons.org/publicdomain/zero/1.0/ + +# Written by Francois Fleuret + +import math, sys, tqdm import torch, torchvision from torch import nn from torch.nn import functional as F -import cairo - - -class Box: - def __init__(self, x, y, w, h, r, g, b): - self.x = x - self.y = y - self.w = w - self.h = h - self.r = r - self.g = g - self.b = b - - def collision(self, scene): - for c in scene: - if ( - self is not c - and max(self.x, c.x) <= min(self.x + self.w, c.x + c.w) - and max(self.y, c.y) <= min(self.y + self.h, c.y + c.h) - ): - return True - return False - - -def scene2tensor(xh, yh, scene, size=64): - width, height = size, size - pixel_map = torch.ByteTensor(width, height, 4).fill_(255) - data = pixel_map.numpy() - surface = cairo.ImageSurface.create_for_data( - data, cairo.FORMAT_ARGB32, width, height - ) - - ctx = cairo.Context(surface) - ctx.set_fill_rule(cairo.FILL_RULE_EVEN_ODD) - - for b in scene: - ctx.move_to(b.x * size, b.y * size) - ctx.rel_line_to(b.w * size, 0) - ctx.rel_line_to(0, b.h * size) - ctx.rel_line_to(-b.w * size, 0) - ctx.close_path() - ctx.set_source_rgba(b.r, b.g, b.b, 1.0) - ctx.fill() - - hs = size * 0.1 - ctx.set_source_rgba(0.0, 0.0, 0.0, 1.0) - ctx.move_to(xh * size - hs / 2, yh * size - hs / 2) - ctx.rel_line_to(hs, 0) - ctx.rel_line_to(0, hs) - ctx.rel_line_to(-hs, 0) - ctx.close_path() - ctx.fill() - - return pixel_map[None, :, :, :3].flip(-1).permute(0, 3, 1, 2).float() / 255 - - -def random_scene(): - scene = [] - colors = [ - (1.00, 0.00, 0.00), - (0.00, 1.00, 0.00), - (0.60, 0.60, 1.00), - (1.00, 1.00, 0.00), - (0.75, 0.75, 0.75), - ] - - for k in range(10): - wh = torch.rand(2) * 0.2 + 0.2 - xy = torch.rand(2) * (1 - wh) - c = colors[torch.randint(len(colors), (1,))] - b = Box( - xy[0].item(), xy[1].item(), wh[0].item(), wh[1].item(), c[0], c[1], c[2] - ) - if not b.collision(scene): - scene.append(b) - - return scene - - -def sequence(nb_steps=10, all_frames=False): - delta = 0.1 - effects = [ - (False, 0, 0), - (False, delta, 0), - (False, 0, delta), - (False, -delta, 0), - (False, 0, -delta), - (True, delta, 0), - (True, 0, delta), - (True, -delta, 0), - (True, 0, -delta), - ] - - while True: - frames = [] - - scene = random_scene() - xh, yh = tuple(x.item() for x in torch.rand(2)) - - frames.append(scene2tensor(xh, yh, scene)) - - actions = torch.randint(len(effects), (nb_steps,)) - change = False - - for a in actions: - g, dx, dy = effects[a] - if g: - for b in scene: - if b.x <= xh and b.x + b.w >= xh and b.y <= yh and b.y + b.h >= yh: - x, y = b.x, b.y - b.x += dx - b.y += dy - if ( - b.x < 0 - or b.y < 0 - or b.x + b.w > 1 - or b.y + b.h > 1 - or b.collision(scene) - ): - b.x, b.y = x, y - else: - xh += dx - yh += dy - change = True - else: - x, y = xh, yh - xh += dx - yh += dy - if xh < 0 or xh > 1 or yh < 0 or yh > 1: - xh, yh = x, y - - if all_frames: - frames.append(scene2tensor(xh, yh, scene)) - - if not all_frames: - frames.append(scene2tensor(xh, yh, scene)) - - if change: - break - - return frames, actions - ###################################################################### -# ||x_i - c_j||^2 = ||x_i||^2 + ||c_j||^2 - 2 -def sq2matrix(x, c): - nx = x.pow(2).sum(1) - nc = c.pow(2).sum(1) - return nx[:, None] + nc[None, :] - 2 * x @ c.t() - - -def update_centroids(x, c, nb_min=1): - _, b = sq2matrix(x, c).min(1) - b.squeeze_() - nb_resets = 0 +colors = torch.tensor( + [ + [255, 255, 255], + [255, 20, 147], + [0, 0, 255], + [0, 192, 0], + [0, 255, 255], + [192, 192, 192], + [106, 90, 205], + [255, 0, 0], + [220, 20, 60], + [65, 105, 225], + [255, 200, 0], + # [255, 182, 193], + # [75, 0, 130], + # [128, 0, 128], + # [30, 144, 255], + # [135, 206, 235], + # [0, 255, 0], + # [64, 224, 208], + # [250, 128, 114], + # [255, 165, 0], + # [0, 255, 255], + ] +) + +token_background = 0 +first_bird_token = 1 +nb_bird_tokens = colors.size(0) - 1 +token_forward = first_bird_token + nb_bird_tokens +token_backward = token_forward + 1 + +token2char = "_" + "".join([chr(ord("A") + n) for n in range(len(colors) - 1)]) + "><" + + +def generate( + nb, + height, + width, + nb_birds=3, + nb_iterations=1, +): + pairs = [] + + for _ in tqdm.tqdm(range(nb), dynamic_ncols=True, desc="world generation"): + f_start = torch.zeros(height, width, dtype=torch.int64) + + i, j, vi, vj = ( + torch.empty(nb_birds, dtype=torch.int64), + torch.empty(nb_birds, dtype=torch.int64), + torch.empty(nb_birds, dtype=torch.int64), + torch.empty(nb_birds, dtype=torch.int64), + ) - for k in range(0, c.size(0)): - i = b.eq(k).nonzero(as_tuple=False).squeeze() - if i.numel() >= nb_min: - c[k] = x.index_select(0, i).mean(0) + col = torch.randperm(colors.size(0) - 1)[:nb_birds].sort().values + 1 + + for n in range(nb_birds): + c = col[n] + + while True: + i[n], j[n] = ( + torch.randint(height, (1,))[0], + torch.randint(width, (1,))[0], + ) + vm = torch.randint(4, (1,))[0] + vi[n], vj[n] = (vm % 2) * 2 - 1, (vm // 2) * 2 - 1 + if ( + i[n] - vi[n] >= 0 + and i[n] - vi[n] < height + and j[n] - vj[n] >= 0 + and j[n] - vj[n] < width + and f_start[i[n], j[n]] == 0 + and f_start[i[n] - vi[n], j[n]] == 0 + and f_start[i[n], j[n] - vj[n]] == 0 + ): + break + + f_start[i[n], j[n]] = c + f_start[i[n] - vi[n], j[n]] = c + f_start[i[n], j[n] - vj[n]] = c + + f_end = f_start.clone() + + for l in range(nb_iterations): + for n in range(nb_birds): + c = col[n] + f_end[i[n], j[n]] = 0 + f_end[i[n] - vi[n], j[n]] = 0 + f_end[i[n], j[n] - vj[n]] = 0 + + pi, pj, pvi, pvj = i[n].item(), j[n].item(), vi[n].item(), vj[n].item() + + assert ( + f_end[i[n], j[n]] == 0 + and f_end[i[n] - vi[n], j[n]] == 0 + and f_end[i[n], j[n] - vj[n]] == 0 + ) + + if (i[n] == 0 and vi[n] == -1) or (i[n] == height - 1 and vi[n] == 1): + vi[n] = -vi[n] + if (j[n] == 0 and vj[n] == -1) or (j[n] == width - 1 and vj[n] == 1): + vj[n] = -vj[n] + + i[n] += vi[n] + j[n] += vj[n] + + if not ( + f_end[i[n], j[n]] == 0 + and f_end[i[n] - vi[n], j[n]] == 0 + and f_end[i[n], j[n] - vj[n]] == 0 + ): + i[n], j[n], vi[n], vj[n] = pi, pj, pvi, pvj + + f_end[i[n], j[n]] = c + f_end[i[n] - vi[n], j[n]] = c + f_end[i[n], j[n] - vj[n]] = c + + pairs.append((f_start, f_end)) + + result = [] + for p in pairs: + if torch.rand(1) < 0.5: + result.append( + torch.cat( + [p[0].flatten(), torch.tensor([token_forward]), p[1].flatten()], + dim=0, + )[None, :] + ) else: - n = torch.randint(x.size(0), (1,)) - nb_resets += 1 - c[k] = x[n] - - return c, b, nb_resets - - -def kmeans(x, nb_centroids, nb_min=1): - if x.size(0) < nb_centroids * nb_min: - print("Not enough points!") - exit(1) - - c = x[torch.randperm(x.size(0))[:nb_centroids]] - t = torch.full((x.size(0),), -1) - n = 0 - - while True: - c, u, nb_resets = update_centroids(x, c, nb_min) - n = n + 1 - nb_changes = (u - t).sign().abs().sum() + nb_resets - t = u - if nb_changes == 0: - break + result.append( + torch.cat( + [p[1].flatten(), torch.tensor([token_backward]), p[0].flatten()], + dim=0, + )[None, :] + ) - return c, t + return torch.cat(result, dim=0) -###################################################################### +def generate_( + nb, + height, + width, + nb_birds=3, + nb_iterations=2, +): + pairs = [] + for n in tqdm.tqdm(range(nb), dynamic_ncols=True, desc="world generation"): + f_start = torch.zeros(height, width, dtype=torch.int64) + f_end = torch.zeros(height, width, dtype=torch.int64) + n = torch.arange(f_start.size(0)) -def patchify(x, factor, invert_size=None): - if invert_size is None: - return ( - x.reshape( - x.size(0), # 0 - x.size(1), # 1 - factor, # 2 - x.size(2) // factor, # 3 - factor, # 4 - x.size(3) // factor, # 5 + for c in ( + (torch.randperm(nb_bird_tokens) + first_bird_token)[:nb_birds].sort().values + ): + i, j = ( + torch.randint(height - 2, (1,))[0] + 1, + torch.randint(width - 2, (1,))[0] + 1, ) - .permute(0, 2, 4, 1, 3, 5) - .reshape(-1, x.size(1), x.size(2) // factor, x.size(3) // factor) - ) - else: - return ( - x.reshape( - invert_size[0], # 0 - factor, # 1 - factor, # 2 - invert_size[1], # 3 - invert_size[2] // factor, # 4 - invert_size[3] // factor, # 5 + vm = torch.randint(4, (1,))[0] + vi, vj = (vm // 2) * (2 * (vm % 2) - 1), (1 - vm // 2) * (2 * (vm % 2) - 1) + + f_start[i, j] = c + f_start[i - vi, j - vj] = c + f_start[i + vj, j - vi] = c + f_start[i - vj, j + vi] = c + + for l in range(nb_iterations): + i += vi + j += vj + if i < 0 or i >= height or j < 0 or j >= width: + i -= vi + j -= vj + vi, vj = -vi, -vj + i += vi + j += vj + + f_end[i, j] = c + f_end[i - vi, j - vj] = c + f_end[i + vj, j - vi] = c + f_end[i - vj, j + vi] = c + + pairs.append((f_start, f_end)) + + result = [] + for p in pairs: + if torch.rand(1) < 0.5: + result.append( + torch.cat( + [p[0].flatten(), torch.tensor([token_forward]), p[1].flatten()], + dim=0, + )[None, :] + ) + else: + result.append( + torch.cat( + [p[1].flatten(), torch.tensor([token_backward]), p[0].flatten()], + dim=0, + )[None, :] ) - .permute(0, 3, 1, 4, 2, 5) - .reshape(invert_size) - ) - - -def train_encoder(input, device=torch.device("cpu")): - class SomeLeNet(nn.Module): - def __init__(self): - super().__init__() - self.conv1 = nn.Conv2d(1, 32, kernel_size=5) - self.conv2 = nn.Conv2d(32, 64, kernel_size=5) - self.fc1 = nn.Linear(256, 200) - self.fc2 = nn.Linear(200, 10) - - def forward(self, x): - x = F.relu(F.max_pool2d(self.conv1(x), kernel_size=3)) - x = F.relu(F.max_pool2d(self.conv2(x), kernel_size=2)) - x = x.view(x.size(0), -1) - x = F.relu(self.fc1(x)) - x = self.fc2(x) - return x - - ###################################################################### - - model = SomeLeNet() - nb_parameters = sum(p.numel() for p in model.parameters()) + return torch.cat(result, dim=0) + + +def sample2img(seq, height, width, upscale=15): + f_first = seq[:, : height * width].reshape(-1, height, width) + f_second = seq[:, height * width + 1 :].reshape(-1, height, width) + direction = seq[:, height * width] + + def mosaic(x, upscale): + x = x.reshape(-1, height, width) + m = torch.logical_and(x >= 0, x < first_bird_token + nb_bird_tokens).long() + x = colors[x * m].permute(0, 3, 1, 2) + s = x.shape + x = x[:, :, :, None, :, None].expand(-1, -1, -1, upscale, -1, upscale) + x = x.reshape(s[0], s[1], s[2] * upscale, s[3] * upscale) + + x[:, :, :, torch.arange(0, x.size(3), upscale)] = 0 + x[:, :, torch.arange(0, x.size(2), upscale), :] = 0 + x = x[:, :, 1:, 1:] + + for n in range(m.size(0)): + for i in range(m.size(1)): + for j in range(m.size(2)): + if m[n, i, j] == 0: + for k in range(2, upscale - 2): + x[n, :, i * upscale + k, j * upscale + k] = 0 + x[n, :, i * upscale + upscale - 1 - k, j * upscale + k] = 0 + + return x + + direction_symbol = torch.full((direction.size(0), height * upscale - 1, upscale), 0) + direction_symbol = colors[direction_symbol].permute(0, 3, 1, 2) + separator = torch.full((direction.size(0), 3, height * upscale - 1, 1), 0) + + for n in range(direction_symbol.size(0)): + if direction[n] == token_forward: + for k in range(upscale): + direction_symbol[ + n, + :, + (height * upscale) // 2 - upscale // 2 + k, + 3 + upscale // 2 - abs(k - upscale // 2), + ] = 0 + elif direction[n] == token_backward: + for k in range(upscale): + direction_symbol[ + n, + :, + (height * upscale) // 2 - upscale // 2 + k, + 3 + abs(k - upscale // 2), + ] = 0 + else: + for k in range(2, upscale - 2): + direction_symbol[ + n, :, (height * upscale) // 2 - upscale // 2 + k, k + ] = 0 + direction_symbol[ + n, :, (height * upscale) // 2 - upscale // 2 + k, upscale - 1 - k + ] = 0 + + return torch.cat( + [ + mosaic(f_first, upscale), + separator, + direction_symbol, + separator, + mosaic(f_second, upscale), + ], + dim=3, + ) - print(f"nb_parameters {nb_parameters}") - optimizer = torch.optim.SGD(model.parameters(), lr=lr) - criterion = nn.CrossEntropyLoss() +def seq2str(seq): + result = [] + for s in seq: + result.append("".join([token2char[v] for v in s])) + return result - model.to(device) - criterion.to(device) - train_input, train_targets = train_input.to(device), train_targets.to(device) - test_input, test_targets = test_input.to(device), test_targets.to(device) +###################################################################### - mu, std = train_input.mean(), train_input.std() - train_input.sub_(mu).div_(std) - test_input.sub_(mu).div_(std) +if __name__ == "__main__": + import time + height, width = 6, 8 start_time = time.perf_counter() + seq = generate(nb=90, height=height, width=width) + delay = time.perf_counter() - start_time + print(f"{seq.size(0)/delay:02f} samples/s") - for k in range(nb_epochs): - acc_loss = 0.0 - - for input, targets in zip( - train_input.split(batch_size), train_targets.split(batch_size) - ): - output = model(input) - loss = criterion(output, targets) - acc_loss += loss.item() - - optimizer.zero_grad() - loss.backward() - optimizer.step() - - nb_test_errors = 0 - for input, targets in zip( - test_input.split(batch_size), test_targets.split(batch_size) - ): - wta = model(input).argmax(1) - nb_test_errors += (wta != targets).long().sum() - test_error = nb_test_errors / test_input.size(0) - duration = time.perf_counter() - start_time - - print(f"loss {k} {duration:.02f}s {acc_loss:.02f} {test_error*100:.02f}%") + print(seq2str(seq[:4])) + # m = (torch.rand(seq.size()) < 0.05).long() + # seq = (1 - m) * seq + m * 23 -###################################################################### - -if __name__ == "__main__": - import time + img = sample2img(seq, height, width) + print(img.size()) - all_frames = [] - nb = 1000 - start_time = time.perf_counter() - for n in range(nb): - frames, actions = sequence(nb_steps=31) - all_frames += frames - end_time = time.perf_counter() - print(f"{nb / (end_time - start_time):.02f} samples per second") - - input = torch.cat(all_frames, 0) - - # x = patchify(input, 8) - # y = x.reshape(x.size(0), -1) - # print(f"{x.size()=} {y.size()=}") - # centroids, t = kmeans(y, 4096) - # results = centroids[t] - # results = results.reshape(x.size()) - # results = patchify(results, 8, input.size()) - - print(f"{input.size()=} {results.size()=}") - - torchvision.utils.save_image(input[:64], "orig.png", nrow=8) - torchvision.utils.save_image(results[:64], "qtiz.png", nrow=8) - - # frames, actions = sequence(nb_steps=31, all_frames=True) - # frames = torch.cat(frames, 0) - # torchvision.utils.save_image(frames, "seq.png", nrow=8) + torchvision.utils.save_image( + img.float() / 255.0, "/tmp/world.png", nrow=6, padding=6, pad_value=0 + )