X-Git-Url: https://fleuret.org/cgi-bin/gitweb/gitweb.cgi?a=blobdiff_plain;f=tasks.py;h=a4ef557d2adde2f7df591adba4d3efc6b31e7d5f;hb=12671bdc1a083514de11399041f74747a6ca601b;hp=0ab18233a72e27b5b0b02e96a21abd5009d37ad6;hpb=ce969e8372fb161d86be29042a20b044ee6efe2a;p=picoclvr.git diff --git a/tasks.py b/tasks.py index 0ab1823..a4ef557 100755 --- a/tasks.py +++ b/tasks.py @@ -14,10 +14,8 @@ from torch.nn import functional as F from mygpt import BracketedSequence -try: - from graph import save_attention_image -except ImportError: - save_attention_image = None +# from graph import save_attention_image +save_attention_image = None ###################################################################### @@ -72,6 +70,162 @@ class Task: pass +class TaskFromFile(Task): + def tensorize(self, pairs, shuffle): + len_max = max([len(x[0]) for x in pairs]) + + input = torch.cat( + [ + torch.tensor( + [ + [self.char2id[c] for c in s[0] + "#" * (len_max - len(s[0]))] + for s in pairs + ] + ) + ], + 0, + ).to("cpu") + + pred_mask = torch.cat( + [ + torch.tensor( + [ + [int(c) for c in s[1] + "0" * (len_max - len(s[1]))] + for s in pairs + ] + ) + ], + 0, + ).to("cpu") + + if shuffle: + i = torch.randperm(input.size(0)) + input = input[i].contiguous() + pred_mask = pred_mask[i].contiguous() + + return input, pred_mask + + # trim all the tensors in the tuple z to remove as much token from + # left and right in the first tensor. If z is a tuple, all its + # elements are trimed according to the triming for the first + def trim(self, z, token="#"): + n = self.char2id[token] + if type(z) == tuple: + x = z[0] + i = (1 - (F.pad(x, (1, 1), value=n) == n).min(0).values.long()).cumsum(0) + a, b = (i == 0).nonzero().max(), (i == i.max()).nonzero().min() + return tuple([t[:, a:b] for t in z]) + else: + i = (1 - (F.pad(z, (1, 1), value=n) == n).min(0).values.long()).cumsum(0) + a, b = (i == 0).nonzero().max(), (i == i.max()).nonzero().min() + return z[:, a:b] + + def __init__( + self, + train_filename, + test_filename, + nb_train_samples, + nb_test_samples, + batch_size, + shuffle=False, + device=torch.device("cpu"), + ): + self.batch_size = batch_size + self.device = device + + def read_file(filename, nb=-1): + pairs = [] + with open(filename, "r") as f: + while True: + sequence = f.readline().strip() + if not sequence: + break + pred_mask = f.readline().strip() + assert len(sequence) == len(pred_mask) + assert set(pred_mask).issubset({"0", "1", "2"}), f"{set(pred_mask)}" + pairs.append((sequence, pred_mask)) + if len(pairs) == nb: + break + + if nb > 0: + pairs = pairs[:nb] + assert len(pairs) == nb + + return pairs + + train_pairs = read_file(train_filename, nb_train_samples) + test_pairs = read_file(test_filename, nb_test_samples) + + symbols = ["#"] + list( + set("".join([x[0] for x in train_pairs + test_pairs])) - set(["#"]) + ) + self.char2id = dict([(c, n) for n, c in enumerate(symbols)]) + self.id2char = dict([(n, c) for c, n in self.char2id.items()]) + + self.train_input, self.train_pred_masks = self.tensorize( + train_pairs, shuffle=shuffle + ) + self.test_input, self.test_pred_masks = self.tensorize( + test_pairs, shuffle=shuffle + ) + + def batches(self, split="train", nb_to_use=-1, desc=None): + assert split in {"train", "test"} + input = self.train_input if split == "train" else self.test_input + if nb_to_use > 0: + input = input[:nb_to_use] + if desc is None: + desc = f"epoch-{split}" + for batch in tqdm.tqdm( + input.split(self.batch_size), dynamic_ncols=True, desc=desc + ): + yield self.trim(batch).to(self.device) + + def vocabulary_size(self): + return len(self.char2id) + + def tensor2str(self, t): + return ["".join([self.id2char[x.item()] for x in s]) for s in t] + + def produce_results( + self, n_epoch, model, result_dir, logger, deterministic_synthesis + ): + correct = self.trim(self.test_input[:1000]).to(self.device) + result = correct.clone() + pred_mask = self.test_pred_masks[:1000, : result.size(1)].to(self.device) + ar_mask = (pred_mask > 0).long() + result *= 1 - ar_mask # paraaaaanoiaaaaaaa + + logger(f"----------------------------------------------------------") + + for e in self.tensor2str(result[:50]): + logger(f"test_before {e}") + + masked_inplace_autoregression( + model, + self.batch_size, + result, + ar_mask, + deterministic_synthesis, + device=self.device, + ) + + logger(f"----------------------------------------------------------") + + for e, c in zip(self.tensor2str(result[:50]), self.tensor2str(correct[:50])): + logger(f"test_after {e}") + logger(f"correct {c}") + + logger(f"----------------------------------------------------------") + + err_mask = (pred_mask == 2).long() + nb_total = err_mask.sum().item() + nb_correct = ((correct == result).long() * err_mask).sum().item() + + logger(f"test_performance {n_epoch} {nb_total=} {nb_correct=}") + logger(f"main_test_accuracy {n_epoch} {nb_correct / nb_total}") + + #################### import problems @@ -111,13 +265,25 @@ class SandBox(Task): self.nb_codes = max(self.train_input.max(), self.test_input.max()) + 1 # A bit of paranoia never hurts - assert ( - self.nb_codes <= max_nb_codes - and self.train_input.min() >= 0 - and self.test_input.min() >= 0 - and tuple(self.train_ar_mask.unique()) == (0, 1) - and tuple(self.test_ar_mask.unique()) == (0, 1) - ) + assert self.nb_codes <= max_nb_codes + assert self.train_input.min() >= 0 + assert self.test_input.min() >= 0 + assert tuple(x.item() for x in self.train_ar_mask.unique()) in { + (0,), + (1,), + (0, 1), + } + assert tuple(x.item() for x in self.test_ar_mask.unique()) in { + (0,), + (1,), + (0, 1), + } + + if logger is not None: + for s, a in zip(self.train_input[:100], self.train_ar_mask[:100]): + logger(f"train_sequences {self.problem.seq2str(s)}") + a = "".join(["01"[x.item()] for x in a]) + logger(f" {a}") def batches(self, split="train", nb_to_use=-1, desc=None): assert split in {"train", "test"} @@ -151,17 +317,24 @@ class SandBox(Task): device=self.device, ) + log_ground_truth = ar_mask.min() == 0 + if logger is not None: for sp, st in zip(result[:10], input[:10]): logger( f"test_sequences {n_epoch} prediction {self.problem.seq2str(sp)}" ) - logger( - f" {n_epoch} ground truth {self.problem.seq2str(st)}" - ) + if log_ground_truth: + logger( + f" {n_epoch} ground truth {self.problem.seq2str(st)}" + ) + + nb_total, nb_correct = self.problem.compute_nb_correct( + input, ar_mask, result + ) - nb_total = ar_mask.sum().item() - nb_correct = ((result == input).long() * ar_mask).sum().item() + # nb_total = ar_mask.sum().item() + # nb_correct = ((result == input).long() * ar_mask).sum().item() return nb_total, nb_correct @@ -183,9 +356,7 @@ class SandBox(Task): logger(f"main_test_accuracy {n_epoch} {test_nb_correct/test_nb_total}") - if save_attention_image is None: - logger("no save_attention_image (is pycairo installed?)") - else: + if save_attention_image is not None: for k in range(10): ns = torch.randint(self.test_input.size(0), (1,)).item() input = self.test_input[ns : ns + 1].clone() @@ -193,30 +364,30 @@ class SandBox(Task): with torch.autograd.no_grad(): t = model.training model.eval() - model.record_attention(True) + # model.record_attention(True) model(BracketedSequence(input)) model.train(t) - ram = model.retrieve_attention() - model.record_attention(False) - - tokens_output = [c for c in self.problem.seq2str(input[0])] - tokens_input = ["n/a"] + tokens_output[:-1] - for n_head in range(ram[0].size(1)): - filename = os.path.join( - result_dir, f"sandbox_attention_{k}_h{n_head}.pdf" - ) - attention_matrices = [m[0, n_head] for m in ram] - save_attention_image( - filename, - tokens_input, - tokens_output, - attention_matrices, - k_top=10, - # min_total_attention=0.9, - token_gap=12, - layer_gap=50, - ) - logger(f"wrote {filename}") + # ram = model.retrieve_attention() + # model.record_attention(False) + + # tokens_output = [c for c in self.problem.seq2str(input[0])] + # tokens_input = ["n/a"] + tokens_output[:-1] + # for n_head in range(ram[0].size(1)): + # filename = os.path.join( + # result_dir, f"sandbox_attention_{k}_h{n_head}.pdf" + # ) + # attention_matrices = [m[0, n_head] for m in ram] + # save_attention_image( + # filename, + # tokens_input, + # tokens_output, + # attention_matrices, + # k_top=10, + ##min_total_attention=0.9, + # token_gap=12, + # layer_gap=50, + # ) + # logger(f"wrote {filename}") ###################################################################### @@ -1426,7 +1597,7 @@ import grid class Grid(Task): # Make a tensor from a list of strings - def tensorize(self, descr): + def str2tensor(self, descr): token_descr = [s.strip().split(" ") for s in descr] l = max([len(s) for s in token_descr]) token_descr = [s + ["#"] * (l - len(s)) for s in token_descr] @@ -1434,7 +1605,7 @@ class Grid(Task): return torch.tensor(id_descr, device=self.device) # Make a list of strings from a tensor - def detensorize(self, x): + def tensor2str(self, x): return [" ".join([self.id2token[t.item()] for t in r]) for r in x] # trim all the tensors in the tuple z to remove as much token from @@ -1459,8 +1630,8 @@ class Grid(Task): nb_train_samples, nb_test_samples, batch_size, - height, - width, + size, + fraction_play=0.0, logger=None, device=torch.device("cpu"), ): @@ -1468,7 +1639,8 @@ class Grid(Task): self.device = device self.batch_size = batch_size - self.grid_factory = grid.GridFactory(height=height, width=width) + self.grid_factory = grid.GridFactory(size=size) + self.fraction_play = fraction_play if logger is not None: logger( @@ -1476,15 +1648,25 @@ class Grid(Task): ) self.train_descr = self.grid_factory.generate_samples( - nb_train_samples, lambda r: tqdm.tqdm(r) + nb=nb_train_samples, + fraction_play=fraction_play, + progress_bar=lambda r: tqdm.tqdm(r), ) + self.test_descr = self.grid_factory.generate_samples( - nb_test_samples, lambda r: tqdm.tqdm(r) + nb=nb_test_samples, fraction_play=0.0, progress_bar=lambda r: tqdm.tqdm(r) ) + if fraction_play > 0: + self.play_descr = self.grid_factory.generate_samples( + nb=25, fraction_play=1.0, progress_bar=lambda r: tqdm.tqdm(r) + ) + else: + self.play_descr = [] + # Build the tokenizer tokens = set() - for d in [self.train_descr, self.test_descr]: + for d in [self.train_descr, self.test_descr, self.play_descr]: for s in d: for t in s.strip().split(" "): tokens.add(t) @@ -1496,12 +1678,16 @@ class Grid(Task): self.token2id = dict([(t, n) for n, t in enumerate(tokens)]) self.id2token = dict([(n, t) for n, t in enumerate(tokens)]) self.t_nul = self.token2id["#"] - self.t_true = self.token2id[""] - self.t_false = self.token2id[""] + self.t_true = self.token2id["true"] + self.t_false = self.token2id["false"] + self.t_pipe = self.token2id["|"] # Tokenize the train and test sets - self.train_input = self.tensorize(self.train_descr) - self.test_input = self.tensorize(self.test_descr) + self.train_input = self.str2tensor(self.train_descr) + self.test_input = self.str2tensor(self.test_descr) + self.play_input = ( + None if len(self.play_descr) == 0 else self.str2tensor(self.play_descr) + ) def batches(self, split="train"): assert split in {"train", "test"} @@ -1520,9 +1706,11 @@ class Grid(Task): correct = self.test_input[:1000] result = correct.clone() ar_mask = torch.logical_or(result == self.t_true, result == self.t_false).long() - result *= 1 - ar_mask + result *= 1 - ar_mask # paraaaaanoiaaaaaaa + + logger(f"----------------------------------------------------------") - for e in self.detensorize(result[:10]): + for e in self.tensor2str(result[:10]): logger(f"test_before {e}") masked_inplace_autoregression( @@ -1534,77 +1722,177 @@ class Grid(Task): device=self.device, ) - for e in self.detensorize(result[:10]): - logger(f"test_after {e}") + logger(f"----------------------------------------------------------") + + for e in self.tensor2str(result[:10]): + logger(f"test_after {e}") + + logger(f"----------------------------------------------------------") nb_total = ar_mask.sum().item() nb_correct = ((correct == result).long() * ar_mask).sum().item() - logger(f"test_performance {nb_total=} {nb_correct=}") - logger(f"main_test_accuracy {nb_correct / nb_total}") + logger(f"test_performance {n_epoch} {nb_total=} {nb_correct=}") + logger(f"main_test_accuracy {n_epoch} {nb_correct / nb_total}") + + if self.play_input is not None: + result = self.play_input.clone() + ar_mask = (result == self.t_pipe).long().cumsum(dim=1).clamp(max=1) + result *= 1 - ar_mask # paraaaaanoiaaaaaaa + + logger(f"----------------------------------------------------------") + + for e in self.tensor2str(result[:10]): + logger(f"play_before {e}") + + masked_inplace_autoregression( + model, + self.batch_size, + result, + ar_mask, + deterministic_synthesis, + device=self.device, + ) + + logger(f"----------------------------------------------------------") + + for e in self.tensor2str(result[:10]): + logger(f"play_after {e}") + + logger(f"----------------------------------------------------------") ###################################################################### -import world +import qmlp + +class QMLP(Task): + ###################### -class World(Task): def __init__( self, nb_train_samples, nb_test_samples, batch_size, - vqae_nb_epochs, + result_dir, logger=None, device=torch.device("cpu"), - device_storage=torch.device("cpu"), ): super().__init__() - self.batch_size = batch_size self.device = device + self.batch_size = batch_size + self.nb_samples_per_mlp = 256 - ( - train_frames, - train_action_seq, - test_frames, - test_action_seq, - self.frame2seq, - self.seq2frame, - ) = world.create_data_and_processors( - nb_train_samples, - nb_test_samples, - mode="first_last", - nb_steps=30, - nb_epochs=vqae_nb_epochs, - logger=logger, - device=device, - device_storage=device_storage, + if logger is not None: + logger( + f"generating {nb_train_samples+nb_test_samples} samples (can take some time)" + ) + + seq, q_test_set, test_error = qmlp.generate_sequence_and_test_set( + nb_mlps=nb_train_samples + nb_test_samples, + nb_samples=self.nb_samples_per_mlp, + device=self.device, + batch_size=64, + nb_epochs=250, + nb_mlps_per_batch=1024, ) - train_frame_seq = self.frame2seq(train_frames).to(device_storage) - test_frame_seq = self.frame2seq(test_frames).to(device_storage) + self.train_input = seq[:nb_train_samples] + self.train_q_test_set = q_test_set[:nb_train_samples] + self.train_ref_test_errors = test_error[:nb_train_samples] + self.test_input = seq[nb_train_samples:] + self.test_q_test_set = q_test_set[nb_train_samples:] + self.test_ref_test_errors = test_error[nb_train_samples:] - nb_frame_codes = max(train_frame_seq.max(), test_frame_seq.max()) + 1 - nb_action_codes = max(train_action_seq.max(), test_action_seq.max()) + 1 + filename = os.path.join(result_dir, f"train_errors_ref.dat") + with open(filename, "w") as f: + for e in self.train_ref_test_errors: + f.write(f"{e}\n") - self.len_frame_seq = train_frame_seq.size(1) - self.len_action_seq = train_action_seq.size(1) - self.nb_codes = nb_frame_codes + nb_action_codes + filename = os.path.join(result_dir, f"test_errors_ref.dat") + with open(filename, "w") as f: + for e in self.test_ref_test_errors: + f.write(f"{e}\n") - train_frame_seq = train_frame_seq.reshape(train_frame_seq.size(0) // 2, 2, -1) + self.nb_codes = max(self.train_input.max(), self.test_input.max()) + 1 - train_action_seq += nb_frame_codes - self.train_input = torch.cat( - (train_frame_seq[:, 0, :], train_action_seq, train_frame_seq[:, 1, :]), 1 + def batches(self, split="train"): + assert split in {"train", "test"} + input = self.train_input if split == "train" else self.test_input + for batch in tqdm.tqdm( + input.split(self.batch_size), dynamic_ncols=True, desc=f"epoch-{split}" + ): + yield batch + + def vocabulary_size(self): + return self.nb_codes + + def produce_results( + self, n_epoch, model, result_dir, logger, deterministic_synthesis + ): + correct = self.test_input[:1000] + result = correct.clone() + ar_mask = ( + torch.arange(result.size(1), device=result.device) + > self.nb_samples_per_mlp * 3 + 1 + ).long()[None, :] + ar_mask = ar_mask.expand_as(result) + result *= 1 - ar_mask # paraaaaanoiaaaaaaa + + masked_inplace_autoregression( + model, + self.batch_size, + result, + ar_mask, + deterministic_synthesis, + device=self.device, ) - test_frame_seq = test_frame_seq.reshape(test_frame_seq.size(0) // 2, 2, -1) - test_action_seq += nb_frame_codes - self.test_input = torch.cat( - (test_frame_seq[:, 0, :], test_action_seq, test_frame_seq[:, 1, :]), 1 + q_train_set = result[:, : self.nb_samples_per_mlp * 3] + q_params = result[:, self.nb_samples_per_mlp * 3 + 1 :] + error_test = qmlp.evaluate_q_params(q_params, self.test_q_test_set) + + filename = os.path.join(result_dir, f"test_errors_{n_epoch:04d}.dat") + with open(filename, "w") as f: + for e in error_test: + f.write(f"{e}\n") + + +###################################################################### + +import escape + + +class Escape(Task): + def __init__( + self, + nb_train_samples, + nb_test_samples, + batch_size, + height, + width, + T, + logger=None, + device=torch.device("cpu"), + ): + super().__init__() + + self.batch_size = batch_size + self.device = device + self.height = height + self.width = width + + states, actions, rewards = escape.generate_episodes( + nb_train_samples + nb_test_samples, height, width, 3 * T ) + seq = escape.episodes2seq(states, actions, rewards, lookahead_delta=T) + seq = seq[:, seq.size(1) // 3 : 2 * seq.size(1) // 3] + self.train_input = seq[:nb_train_samples].to(self.device) + self.test_input = seq[nb_train_samples:].to(self.device) + + self.nb_codes = max(self.train_input.max(), self.test_input.max()) + 1 def batches(self, split="train", nb_to_use=-1, desc=None): assert split in {"train", "test"} @@ -1616,25 +1904,89 @@ class World(Task): for batch in tqdm.tqdm( input.split(self.batch_size), dynamic_ncols=True, desc=desc ): - yield batch.to(self.device) + yield batch def vocabulary_size(self): return self.nb_codes + def thinking_autoregression( + self, n_epoch, model, result_dir, logger, deterministic_synthesis, nmax=1000 + ): + result = self.test_input[:100].clone() + t = torch.arange(result.size(1), device=result.device) + state_len = self.height * self.width + iteration_len = state_len + 3 + + def ar(): + masked_inplace_autoregression( + model, + self.batch_size, + result, + ar_mask, + deterministic_synthesis, + device=self.device, + ) + + for u in range( + iteration_len, result.size(1) - iteration_len + 1, iteration_len + ): + # Put a lookahead reward to -1, sample the next state + result[:, u - 1] = (-1) + 1 + escape.first_lookahead_rewards_code + ar_mask = (t >= u).long() * (t < u + state_len).long() + ar_mask = ar_mask[None, :] + ar_mask = ar_mask.expand_as(result) + result *= 1 - ar_mask + ar() + + # Put a lookahead reward to +1, sample the action and reward + result[:, u - 1] = (1) + 1 + escape.first_lookahead_rewards_code + ar_mask = (t >= state_len).long() * (t < state_len + 2).long() + ar_mask = ar_mask[None, :] + ar_mask = ar_mask.expand_as(result) + result *= 1 - ar_mask + ar() + + # Saving the generated sequences + + s, a, r, lr = escape.seq2episodes( + result, self.height, self.width, lookahead=True + ) + str = escape.episodes2str( + s, a, r, lookahead_rewards=lr, unicode=True, ansi_colors=True + ) + + filename = os.path.join(result_dir, f"test_thinking_seq_{n_epoch:04d}.txt") + with open(filename, "w") as f: + f.write(str) + logger(f"wrote {filename}") + def produce_results( - self, n_epoch, model, result_dir, logger, deterministic_synthesis + self, n_epoch, model, result_dir, logger, deterministic_synthesis, nmax=1000 ): - k = torch.arange( - 2 * self.len_frame_seq + self.len_action_seq, device=self.device - )[None, :] + result = self.test_input[:100].clone() - input = self.test_input[:64].to(self.device) - result = input.clone() + # Saving the ground truth - ar_mask = ( - (k >= self.len_frame_seq + self.len_action_seq).long().expand_as(result) + s, a, r, lr = escape.seq2episodes( + result, self.height, self.width, lookahead=True ) - result *= 1 - ar_mask + str = escape.episodes2str( + s, a, r, lookahead_rewards=lr, unicode=True, ansi_colors=True + ) + + filename = os.path.join(result_dir, f"test_true_seq_{n_epoch:04d}.txt") + with open(filename, "w") as f: + f.write(str) + logger(f"wrote {filename}") + + # Re-generating from the first frame + + ar_mask = ( + torch.arange(result.size(1), device=result.device) + >= self.height * self.width + 3 + ).long()[None, :] + ar_mask = ar_mask.expand_as(result) + result *= 1 - ar_mask # paraaaaanoiaaaaaaa masked_inplace_autoregression( model, @@ -1645,25 +1997,23 @@ class World(Task): device=self.device, ) - seq_start = input[:, : self.len_frame_seq] - seq_end = input[:, self.len_frame_seq + self.len_action_seq :] - seq_predicted = result[:, self.len_frame_seq + self.len_action_seq :] + # Saving the generated sequences - result = torch.cat( - (seq_start[:, None, :], seq_end[:, None, :], seq_predicted[:, None, :]), 1 + s, a, r, lr = escape.seq2episodes( + result, self.height, self.width, lookahead=True + ) + str = escape.episodes2str( + s, a, r, lookahead_rewards=lr, unicode=True, ansi_colors=True ) - result = result.reshape(-1, result.size(-1)) - frames = self.seq2frame(result) - image_name = os.path.join(result_dir, f"world_result_{n_epoch:04d}.png") - torchvision.utils.save_image( - frames.float() / (world.Box.nb_rgb_levels - 1), - image_name, - nrow=12, - padding=1, - pad_value=0.0, + filename = os.path.join(result_dir, f"test_seq_{n_epoch:04d}.txt") + with open(filename, "w") as f: + f.write(str) + logger(f"wrote {filename}") + + self.thinking_autoregression( + n_epoch, model, result_dir, logger, deterministic_synthesis, nmax ) - logger(f"wrote {image_name}") ######################################################################