X-Git-Url: https://fleuret.org/cgi-bin/gitweb/gitweb.cgi?a=blobdiff_plain;f=tasks.py;h=0ab18233a72e27b5b0b02e96a21abd5009d37ad6;hb=ce969e8372fb161d86be29042a20b044ee6efe2a;hp=b2f7d7dc5f750610333d03b7da6c183d83ff7a7a;hpb=16cb07f99cf770fb4e97824f874a68cbddd4c1cf;p=picoclvr.git diff --git a/tasks.py b/tasks.py index b2f7d7d..0ab1823 100755 --- a/tasks.py +++ b/tasks.py @@ -181,6 +181,43 @@ class SandBox(Task): f"accuracy_test {n_epoch} nb_total {test_nb_total} nb_correct {test_nb_correct} accuracy {(100.0*test_nb_correct)/test_nb_total:.02f}%" ) + logger(f"main_test_accuracy {n_epoch} {test_nb_correct/test_nb_total}") + + if save_attention_image is None: + logger("no save_attention_image (is pycairo installed?)") + else: + for k in range(10): + ns = torch.randint(self.test_input.size(0), (1,)).item() + input = self.test_input[ns : ns + 1].clone() + + with torch.autograd.no_grad(): + t = model.training + model.eval() + model.record_attention(True) + model(BracketedSequence(input)) + model.train(t) + ram = model.retrieve_attention() + model.record_attention(False) + + tokens_output = [c for c in self.problem.seq2str(input[0])] + tokens_input = ["n/a"] + tokens_output[:-1] + for n_head in range(ram[0].size(1)): + filename = os.path.join( + result_dir, f"sandbox_attention_{k}_h{n_head}.pdf" + ) + attention_matrices = [m[0, n_head] for m in ram] + save_attention_image( + filename, + tokens_input, + tokens_output, + attention_matrices, + k_top=10, + # min_total_attention=0.9, + token_gap=12, + layer_gap=50, + ) + logger(f"wrote {filename}") + ###################################################################### @@ -336,6 +373,10 @@ class PicoCLVR(Task): f"property_{prefix}miss {n_epoch} {100*nb_missing_properties/nb_requested_properties:.02f}%" ) + logger( + f"main_test_accuracy {n_epoch} {1-nb_missing_properties/nb_requested_properties}" + ) + ###################################################################### def produce_results( @@ -606,6 +647,8 @@ class Maze(Task): f"accuracy_test {n_epoch} nb_total {test_nb_total} nb_correct {test_nb_correct} accuracy {(100.0*test_nb_correct)/test_nb_total:.02f}%" ) + logger(f"main_test_accuracy {n_epoch} {test_nb_correct/test_nb_total}") + if count is not None: proportion_optimal = count.diagonal().sum().float() / count.sum() logger(f"proportion_optimal_test {proportion_optimal*100:.02f}%") @@ -745,6 +788,8 @@ class Snake(Task): f"accuracy_test {n_epoch} nb_total {test_nb_total} nb_correct {test_nb_correct} accuracy {(100.0*test_nb_correct)/test_nb_total:.02f}%" ) + logger(f"main_test_accuracy {n_epoch} {test_nb_correct/test_nb_total}") + ###################################################################### @@ -854,6 +899,8 @@ class Stack(Task): f"accuracy_test {n_epoch} nb_total {test_nb_total} nb_correct {test_nb_correct} accuracy {(100.0*test_nb_correct)/test_nb_total:.02f}%" ) + logger(f"main_test_accuracy {n_epoch} {test_nb_correct/test_nb_total}") + ############################################################## # Log a few generated sequences input = self.test_input[:10, : 12 * (1 + self.nb_digits)] @@ -1126,6 +1173,8 @@ class RPL(Task): f"accuracy_prog_test {n_epoch} nb_total {test_nb_total} nb_errors {test_nb_errors} accuracy {100.0*(1-test_nb_errors/test_nb_total):.02f}%" ) + logger(f"main_test_accuracy {n_epoch} {1-test_nb_errors/test_nb_total}") + test_nb_total, test_nb_errors = compute_nb_errors_output( self.test_input[:1000].to(self.device), nb_to_log=10 ) @@ -1134,7 +1183,9 @@ class RPL(Task): f"accuracy_output_test {n_epoch} nb_total {test_nb_total} nb_errors {test_nb_errors} accuracy {100.0*(1-test_nb_errors/test_nb_total):.02f}%" ) - if save_attention_image is not None: + if save_attention_image is None: + logger("no save_attention_image (is pycairo installed?)") + else: ns = torch.randint(self.test_input.size(0), (1,)).item() input = self.test_input[ns : ns + 1].clone() last = (input != self.t_nul).max(0).values.nonzero().max() + 3 @@ -1322,6 +1373,8 @@ class Expr(Task): f"accuracy_test {n_epoch} nb_total {test_nb_total} nb_correct {test_nb_correct} accuracy {(100.0*test_nb_correct)/test_nb_total:.02f}%" ) + logger(f"main_test_accuracy {n_epoch} {test_nb_correct/test_nb_total}") + nb_total = test_nb_delta.sum() + test_nb_missed for d in range(test_nb_delta.size(0)): logger( @@ -1366,6 +1419,131 @@ class Expr(Task): ############################################################## +###################################################################### + +import grid + + +class Grid(Task): + # Make a tensor from a list of strings + def tensorize(self, descr): + token_descr = [s.strip().split(" ") for s in descr] + l = max([len(s) for s in token_descr]) + token_descr = [s + ["#"] * (l - len(s)) for s in token_descr] + id_descr = [[self.token2id[u] for u in s] for s in token_descr] + return torch.tensor(id_descr, device=self.device) + + # Make a list of strings from a tensor + def detensorize(self, x): + return [" ".join([self.id2token[t.item()] for t in r]) for r in x] + + # trim all the tensors in the tuple z to remove as much token from + # left and right in the first tensor. If z is a tuple, all its + # elements are trimed according to the triming for the first + def trim(self, z, token="#"): + n = self.token2id[token] + if type(z) == tuple: + x = z[0] + i = (1 - (F.pad(x, (1, 1), value=n) == n).min(0).values.long()).cumsum(0) + a, b = (i == 0).nonzero().max(), (i == i.max()).nonzero().min() + return tuple([t[:, a:b] for t in z]) + else: + i = (1 - (F.pad(z, (1, 1), value=n) == n).min(0).values.long()).cumsum(0) + a, b = (i == 0).nonzero().max(), (i == i.max()).nonzero().min() + return z[:, a:b] + + ###################### + + def __init__( + self, + nb_train_samples, + nb_test_samples, + batch_size, + height, + width, + logger=None, + device=torch.device("cpu"), + ): + super().__init__() + + self.device = device + self.batch_size = batch_size + self.grid_factory = grid.GridFactory(height=height, width=width) + + if logger is not None: + logger( + f"generating {nb_train_samples+nb_test_samples} samples (can take some time)" + ) + + self.train_descr = self.grid_factory.generate_samples( + nb_train_samples, lambda r: tqdm.tqdm(r) + ) + self.test_descr = self.grid_factory.generate_samples( + nb_test_samples, lambda r: tqdm.tqdm(r) + ) + + # Build the tokenizer + tokens = set() + for d in [self.train_descr, self.test_descr]: + for s in d: + for t in s.strip().split(" "): + tokens.add(t) + # make this set a sorted list to get the same tensors given + # the same descr + tokens = list(tokens) + tokens.sort() + tokens = ["#"] + tokens + self.token2id = dict([(t, n) for n, t in enumerate(tokens)]) + self.id2token = dict([(n, t) for n, t in enumerate(tokens)]) + self.t_nul = self.token2id["#"] + self.t_true = self.token2id[""] + self.t_false = self.token2id[""] + + # Tokenize the train and test sets + self.train_input = self.tensorize(self.train_descr) + self.test_input = self.tensorize(self.test_descr) + + def batches(self, split="train"): + assert split in {"train", "test"} + input = self.train_input if split == "train" else self.test_input + for batch in tqdm.tqdm( + input.split(self.batch_size), dynamic_ncols=True, desc=f"epoch-{split}" + ): + yield self.trim(batch) + + def vocabulary_size(self): + return len(self.token2id) + + def produce_results( + self, n_epoch, model, result_dir, logger, deterministic_synthesis + ): + correct = self.test_input[:1000] + result = correct.clone() + ar_mask = torch.logical_or(result == self.t_true, result == self.t_false).long() + result *= 1 - ar_mask + + for e in self.detensorize(result[:10]): + logger(f"test_before {e}") + + masked_inplace_autoregression( + model, + self.batch_size, + result, + ar_mask, + deterministic_synthesis, + device=self.device, + ) + + for e in self.detensorize(result[:10]): + logger(f"test_after {e}") + + nb_total = ar_mask.sum().item() + nb_correct = ((correct == result).long() * ar_mask).sum().item() + + logger(f"test_performance {nb_total=} {nb_correct=}") + logger(f"main_test_accuracy {nb_correct / nb_total}") + + ###################################################################### import world