X-Git-Url: https://fleuret.org/cgi-bin/gitweb/gitweb.cgi?a=blobdiff_plain;f=tasks.py;h=066f1bbec05fcc0d65365823ea60931010e118cb;hb=26ef53ee3769c3b6b92b85d15b5a43cbd18ede07;hp=b2f7d7dc5f750610333d03b7da6c183d83ff7a7a;hpb=16cb07f99cf770fb4e97824f874a68cbddd4c1cf;p=picoclvr.git diff --git a/tasks.py b/tasks.py index b2f7d7d..066f1bb 100755 --- a/tasks.py +++ b/tasks.py @@ -181,6 +181,43 @@ class SandBox(Task): f"accuracy_test {n_epoch} nb_total {test_nb_total} nb_correct {test_nb_correct} accuracy {(100.0*test_nb_correct)/test_nb_total:.02f}%" ) + logger(f"main_test_accuracy {n_epoch} {test_nb_correct/test_nb_total}") + + if save_attention_image is None: + logger("no save_attention_image (is pycairo installed?)") + else: + for k in range(10): + ns = torch.randint(self.test_input.size(0), (1,)).item() + input = self.test_input[ns : ns + 1].clone() + + with torch.autograd.no_grad(): + t = model.training + model.eval() + model.record_attention(True) + model(BracketedSequence(input)) + model.train(t) + ram = model.retrieve_attention() + model.record_attention(False) + + tokens_output = [c for c in self.problem.seq2str(input[0])] + tokens_input = ["n/a"] + tokens_output[:-1] + for n_head in range(ram[0].size(1)): + filename = os.path.join( + result_dir, f"sandbox_attention_{k}_h{n_head}.pdf" + ) + attention_matrices = [m[0, n_head] for m in ram] + save_attention_image( + filename, + tokens_input, + tokens_output, + attention_matrices, + k_top=10, + # min_total_attention=0.9, + token_gap=12, + layer_gap=50, + ) + logger(f"wrote {filename}") + ###################################################################### @@ -336,6 +373,10 @@ class PicoCLVR(Task): f"property_{prefix}miss {n_epoch} {100*nb_missing_properties/nb_requested_properties:.02f}%" ) + logger( + f"main_test_accuracy {n_epoch} {1-nb_missing_properties/nb_requested_properties}" + ) + ###################################################################### def produce_results( @@ -606,6 +647,8 @@ class Maze(Task): f"accuracy_test {n_epoch} nb_total {test_nb_total} nb_correct {test_nb_correct} accuracy {(100.0*test_nb_correct)/test_nb_total:.02f}%" ) + logger(f"main_test_accuracy {n_epoch} {test_nb_correct/test_nb_total}") + if count is not None: proportion_optimal = count.diagonal().sum().float() / count.sum() logger(f"proportion_optimal_test {proportion_optimal*100:.02f}%") @@ -745,6 +788,8 @@ class Snake(Task): f"accuracy_test {n_epoch} nb_total {test_nb_total} nb_correct {test_nb_correct} accuracy {(100.0*test_nb_correct)/test_nb_total:.02f}%" ) + logger(f"main_test_accuracy {n_epoch} {test_nb_correct/test_nb_total}") + ###################################################################### @@ -854,6 +899,8 @@ class Stack(Task): f"accuracy_test {n_epoch} nb_total {test_nb_total} nb_correct {test_nb_correct} accuracy {(100.0*test_nb_correct)/test_nb_total:.02f}%" ) + logger(f"main_test_accuracy {n_epoch} {test_nb_correct/test_nb_total}") + ############################################################## # Log a few generated sequences input = self.test_input[:10, : 12 * (1 + self.nb_digits)] @@ -1126,6 +1173,8 @@ class RPL(Task): f"accuracy_prog_test {n_epoch} nb_total {test_nb_total} nb_errors {test_nb_errors} accuracy {100.0*(1-test_nb_errors/test_nb_total):.02f}%" ) + logger(f"main_test_accuracy {n_epoch} {1-test_nb_errors/test_nb_total}") + test_nb_total, test_nb_errors = compute_nb_errors_output( self.test_input[:1000].to(self.device), nb_to_log=10 ) @@ -1134,7 +1183,9 @@ class RPL(Task): f"accuracy_output_test {n_epoch} nb_total {test_nb_total} nb_errors {test_nb_errors} accuracy {100.0*(1-test_nb_errors/test_nb_total):.02f}%" ) - if save_attention_image is not None: + if save_attention_image is None: + logger("no save_attention_image (is pycairo installed?)") + else: ns = torch.randint(self.test_input.size(0), (1,)).item() input = self.test_input[ns : ns + 1].clone() last = (input != self.t_nul).max(0).values.nonzero().max() + 3 @@ -1322,6 +1373,8 @@ class Expr(Task): f"accuracy_test {n_epoch} nb_total {test_nb_total} nb_correct {test_nb_correct} accuracy {(100.0*test_nb_correct)/test_nb_total:.02f}%" ) + logger(f"main_test_accuracy {n_epoch} {test_nb_correct/test_nb_total}") + nb_total = test_nb_delta.sum() + test_nb_missed for d in range(test_nb_delta.size(0)): logger( @@ -1368,77 +1421,185 @@ class Expr(Task): ###################################################################### -import world +import grid -class World(Task): +class Grid(Task): + # Make a tensor from a list of strings + def str2tensor(self, descr): + token_descr = [s.strip().split(" ") for s in descr] + l = max([len(s) for s in token_descr]) + token_descr = [s + ["#"] * (l - len(s)) for s in token_descr] + id_descr = [[self.token2id[u] for u in s] for s in token_descr] + return torch.tensor(id_descr, device=self.device) + + # Make a list of strings from a tensor + def tensor2str(self, x): + return [" ".join([self.id2token[t.item()] for t in r]) for r in x] + + # trim all the tensors in the tuple z to remove as much token from + # left and right in the first tensor. If z is a tuple, all its + # elements are trimed according to the triming for the first + def trim(self, z, token="#"): + n = self.token2id[token] + if type(z) == tuple: + x = z[0] + i = (1 - (F.pad(x, (1, 1), value=n) == n).min(0).values.long()).cumsum(0) + a, b = (i == 0).nonzero().max(), (i == i.max()).nonzero().min() + return tuple([t[:, a:b] for t in z]) + else: + i = (1 - (F.pad(z, (1, 1), value=n) == n).min(0).values.long()).cumsum(0) + a, b = (i == 0).nonzero().max(), (i == i.max()).nonzero().min() + return z[:, a:b] + + ###################### + def __init__( self, nb_train_samples, nb_test_samples, batch_size, - vqae_nb_epochs, + size, logger=None, device=torch.device("cpu"), - device_storage=torch.device("cpu"), ): super().__init__() - self.batch_size = batch_size self.device = device + self.batch_size = batch_size + self.grid_factory = grid.GridFactory(size=size) - ( - train_frames, - train_action_seq, - test_frames, - test_action_seq, - self.frame2seq, - self.seq2frame, - ) = world.create_data_and_processors( - nb_train_samples, - nb_test_samples, - mode="first_last", - nb_steps=30, - nb_epochs=vqae_nb_epochs, - logger=logger, - device=device, - device_storage=device_storage, + if logger is not None: + logger( + f"generating {nb_train_samples+nb_test_samples} samples (can take some time)" + ) + + self.train_descr = self.grid_factory.generate_samples( + nb_train_samples, lambda r: tqdm.tqdm(r) + ) + self.test_descr = self.grid_factory.generate_samples( + nb_test_samples, lambda r: tqdm.tqdm(r) ) - train_frame_seq = self.frame2seq(train_frames).to(device_storage) - test_frame_seq = self.frame2seq(test_frames).to(device_storage) + # Build the tokenizer + tokens = set() + for d in [self.train_descr, self.test_descr]: + for s in d: + for t in s.strip().split(" "): + tokens.add(t) + # make this set a sorted list to get the same tensors given + # the same descr + tokens = list(tokens) + tokens.sort() + tokens = ["#"] + tokens + self.token2id = dict([(t, n) for n, t in enumerate(tokens)]) + self.id2token = dict([(n, t) for n, t in enumerate(tokens)]) + self.t_nul = self.token2id["#"] + self.t_true = self.token2id["true"] + self.t_false = self.token2id["false"] + + # Tokenize the train and test sets + self.train_input = self.str2tensor(self.train_descr) + self.test_input = self.str2tensor(self.test_descr) + + def batches(self, split="train"): + assert split in {"train", "test"} + input = self.train_input if split == "train" else self.test_input + for batch in tqdm.tqdm( + input.split(self.batch_size), dynamic_ncols=True, desc=f"epoch-{split}" + ): + yield self.trim(batch) + + def vocabulary_size(self): + return len(self.token2id) - nb_frame_codes = max(train_frame_seq.max(), test_frame_seq.max()) + 1 - nb_action_codes = max(train_action_seq.max(), test_action_seq.max()) + 1 + def produce_results( + self, n_epoch, model, result_dir, logger, deterministic_synthesis + ): + correct = self.test_input[:1000] + result = correct.clone() + ar_mask = torch.logical_or(result == self.t_true, result == self.t_false).long() + result *= 1 - ar_mask # paraaaaanoiaaaaaaa - self.len_frame_seq = train_frame_seq.size(1) - self.len_action_seq = train_action_seq.size(1) - self.nb_codes = nb_frame_codes + nb_action_codes + logger(f"----------------------------------------------------------") - train_frame_seq = train_frame_seq.reshape(train_frame_seq.size(0) // 2, 2, -1) + for e in self.tensor2str(result[:10]): + logger(f"test_before {e}") - train_action_seq += nb_frame_codes - self.train_input = torch.cat( - (train_frame_seq[:, 0, :], train_action_seq, train_frame_seq[:, 1, :]), 1 + masked_inplace_autoregression( + model, + self.batch_size, + result, + ar_mask, + deterministic_synthesis, + device=self.device, ) - test_frame_seq = test_frame_seq.reshape(test_frame_seq.size(0) // 2, 2, -1) - test_action_seq += nb_frame_codes - self.test_input = torch.cat( - (test_frame_seq[:, 0, :], test_action_seq, test_frame_seq[:, 1, :]), 1 + logger(f"----------------------------------------------------------") + + for e in self.tensor2str(result[:10]): + logger(f"test_after {e}") + + logger(f"----------------------------------------------------------") + + nb_total = ar_mask.sum().item() + nb_correct = ((correct == result).long() * ar_mask).sum().item() + + logger(f"test_performance {n_epoch} {nb_total=} {nb_correct=}") + logger(f"main_test_accuracy {n_epoch} {nb_correct / nb_total}") + + +###################################################################### + +import qmlp + + +class QMLP(Task): + + ###################### + + def __init__( + self, + nb_train_samples, + nb_test_samples, + batch_size, + logger=None, + device=torch.device("cpu"), + ): + super().__init__() + + self.device = device + self.batch_size = batch_size + self.nb_samples_per_mlp = 256 + + if logger is not None: + logger( + f"generating {nb_train_samples+nb_test_samples} samples (can take some time)" + ) + + seq, q_test_set = generate_sequence_and_test_set( + nb_mlps=nb_train_samples+nb_test_samples, + nb_samples=self.nb_samples_per_mlp, + device=self.device, + batch_size=64, + nb_epochs=250, + nb_mlps_per_batch=1024 ) - def batches(self, split="train", nb_to_use=-1, desc=None): + self.train_input = seq[:nb_train_samples] + self.train_q_test_set = q_test_set[:nb_train_samples] + self.test_input = seq[nb_train_samples:] + self.test_q_test_set = q_test_set[nb_train_samples:] + + self.nb_codes = max(self.train_input.max(), self.test_input.max()) + 1 + + def batches(self, split="train"): assert split in {"train", "test"} input = self.train_input if split == "train" else self.test_input - if nb_to_use > 0: - input = input[:nb_to_use] - if desc is None: - desc = f"epoch-{split}" for batch in tqdm.tqdm( - input.split(self.batch_size), dynamic_ncols=True, desc=desc + input.split(self.batch_size), dynamic_ncols=True, desc=f"epoch-{split}" ): - yield batch.to(self.device) + yield self.trim(batch) def vocabulary_size(self): return self.nb_codes @@ -1446,17 +1607,15 @@ class World(Task): def produce_results( self, n_epoch, model, result_dir, logger, deterministic_synthesis ): - k = torch.arange( - 2 * self.len_frame_seq + self.len_action_seq, device=self.device - )[None, :] + correct = self.test_input[:1000] + result = correct.clone() + ar_mask = torch.arange(result.size(1)) > self.nb_samples_per_mlp * 3 + 1 + result *= 1 - ar_mask # paraaaaanoiaaaaaaa - input = self.test_input[:64].to(self.device) - result = input.clone() + logger(f"----------------------------------------------------------") - ar_mask = ( - (k >= self.len_frame_seq + self.len_action_seq).long().expand_as(result) - ) - result *= 1 - ar_mask + for e in self.tensor2str(result[:10]): + logger(f"test_before {e}") masked_inplace_autoregression( model, @@ -1467,25 +1626,18 @@ class World(Task): device=self.device, ) - seq_start = input[:, : self.len_frame_seq] - seq_end = input[:, self.len_frame_seq + self.len_action_seq :] - seq_predicted = result[:, self.len_frame_seq + self.len_action_seq :] + logger(f"----------------------------------------------------------") - result = torch.cat( - (seq_start[:, None, :], seq_end[:, None, :], seq_predicted[:, None, :]), 1 - ) - result = result.reshape(-1, result.size(-1)) + for e in self.tensor2str(result[:10]): + logger(f"test_after {e}") - frames = self.seq2frame(result) - image_name = os.path.join(result_dir, f"world_result_{n_epoch:04d}.png") - torchvision.utils.save_image( - frames.float() / (world.Box.nb_rgb_levels - 1), - image_name, - nrow=12, - padding=1, - pad_value=0.0, - ) - logger(f"wrote {image_name}") + logger(f"----------------------------------------------------------") + + q_train_set = result[:, : nb_samples * 3] + q_params = result[:, nb_samples * 3 + 1 :] + error_test = evaluate_q_params(q_params, q_test_set, nb_mlps_per_batch=17) + + logger(f"{error_test=}") ######################################################################