X-Git-Url: https://fleuret.org/cgi-bin/gitweb/gitweb.cgi?a=blobdiff_plain;f=mygpt.py;h=f3c9a933bf66b9663eb90fe9e5620d5b5d6ce08c;hb=195d05199b5203c79694702756921d10b7d03ddc;hp=87071c36107bcc0f847293753f7e1eb8390d5e93;hpb=d22053eb84b067c04f4d5304cbbbbc962c540e72;p=mygptrnn.git diff --git a/mygpt.py b/mygpt.py index 87071c3..f3c9a93 100755 --- a/mygpt.py +++ b/mygpt.py @@ -37,7 +37,7 @@ import ffutils # 1 for the successive tokens. # # Modules able to process brackets may implement a cache that is -# resetted when the input bracket starts at t=0 +# resetted when init_cache is True class BracketedSequence: @@ -181,7 +181,7 @@ def nsum_shape(X, Y_init): class DumbRec(nn.Module): def __init__( self, - dim_in, + dim_model, dim_qk, dim_v, nb_heads, @@ -199,11 +199,11 @@ class DumbRec(nn.Module): self.k_star = randw(nb_lines, dim_qk) - self.w_qw = randw(nb_heads, dim_qk, dim_in) - self.w_qr = randw(nb_heads, dim_qk, dim_in) - # self.w_k = randw(nb_heads, dim_qk, dim_in) - self.w_v = randw(nb_heads, dim_v, dim_in) - self.w_o = randw(dim_v * nb_heads, dim_in) + self.w_qw = randw(nb_heads, dim_qk, dim_model) + self.w_qr = randw(nb_heads, dim_qk, dim_model) + # self.w_k = randw(nb_heads, dim_qk, dim_model) + self.w_v = randw(nb_heads, dim_v, dim_model) + self.w_o = randw(dim_v * nb_heads, dim_model) def reset_inner_loss(self): self.acc_attention = 0 @@ -310,7 +310,7 @@ class DumbRec(nn.Module): class KVRec(nn.Module): def __init__( self, - dim_in, + dim_model, dim_qk, dim_v, nb_heads, @@ -328,11 +328,11 @@ class KVRec(nn.Module): self.k_star = randw(nb_lines, dim_qk) - self.w_qw = randw(nb_heads, dim_qk, dim_in) - self.w_qr = randw(nb_heads, dim_qk, dim_in) - self.w_k = randw(nb_heads, dim_qk, dim_in) - self.w_v = randw(nb_heads, dim_v, dim_in) - self.w_o = randw(dim_v * nb_heads, dim_in) + self.w_qw = randw(nb_heads, dim_qk, dim_model) + self.w_qr = randw(nb_heads, dim_qk, dim_model) + self.w_k = randw(nb_heads, dim_qk, dim_model) + self.w_v = randw(nb_heads, dim_v, dim_model) + self.w_o = randw(dim_v * nb_heads, dim_model) def reset_inner_loss(self): self.acc_attention = 0 @@ -441,6 +441,11 @@ class KVRec(nn.Module): ############################## +# Returns a tensor with an additional index at rank win_dim, that move +# along the same dimension as dim, on a domain {0...win_size-1}, and +# dim is restricted on a domain reduced by win_size-1 values. + + def moving_window(x, dim, win_dim, win_size): size, stride = x.size(), x.stride() size = size[:dim] + (size[dim] - win_size + 1,) + size[dim + 1 :] @@ -456,7 +461,7 @@ def moving_window(x, dim, win_dim, win_size): class Caterpillar(nn.Module): def __init__( self, - dim_in, + dim_model, dim_qk, dim_v, nb_heads, @@ -476,17 +481,20 @@ class Caterpillar(nn.Module): self.caterpillar_height = caterpillar_height self.attention_dropout = attention_dropout - self.w_G = randw(nb_heads, caterpillar_height, dim_in) + warnings.warn("flash back", RuntimeWarning) + self.proba_flashback = 1e-2 + + self.w_G = randw(nb_heads, caterpillar_height, dim_model) self.b_G = nn.Parameter( torch.full( (nb_heads, caterpillar_height), -math.log(caterpillar_height - 1) ) ) - self.w_K = randw(nb_heads, dim_qk, dim_in) - self.w_V = randw(nb_heads, dim_v, dim_in) - self.w_Q = randw(nb_heads, dim_qk, dim_in) - self.w_O = randw(dim_v * nb_heads, dim_in) + self.w_K = randw(nb_heads, dim_qk, dim_model) + self.w_V = randw(nb_heads, dim_v, dim_model) + self.w_Q = randw(nb_heads, dim_qk, dim_model) + self.w_O = randw(dim_v * nb_heads, dim_model) self.init_K_rec = randw(caterpillar_height, caterpillar_length, dim_qk) self.init_V_rec = randw(caterpillar_height, caterpillar_length, dim_v) @@ -507,9 +515,10 @@ class Caterpillar(nn.Module): N = bs.x.size(0) T = bs.x.size(1) + H = self.w_V.size(0) DV = self.w_V.size(1) DK = self.w_K.size(1) - Dout = self.w_O.size(1) + DM = self.w_O.size(1) CH = self.caterpillar_height CL = self.caterpillar_length @@ -517,23 +526,39 @@ class Caterpillar(nn.Module): t0 >= CL and (t1 - t0) % CL == 0 ), f"bs.first should be greater than caterpillar_length, and bs.nb should be a multiple of caterpillar_length" + # We cache values to deal efficiently with auto-regression + if bs.init_cache: self.rec_V = X.new_zeros(N, CH, T, DV) - self.rec_V[:, :, t0 - CL : t0] = self.init_V_rec[None, :, :, :] self.rec_K = X.new_zeros(N, CH, T, DK) + # We start the recurrent sequences with optimizable + # initial values. No idea if it helps. + self.rec_V[:, :, t0 - CL : t0] = self.init_V_rec[None, :, :, :] self.rec_K[:, :, t0 - CL : t0] = self.init_K_rec[None, :, :, :] - self.cache_Y = X.new_zeros(N, T, Dout) + + self.cache_Y = X.new_zeros(N, T, DM) ###################################################################### # Compute the recurrent state + # This is the Gating sequence that modulates the storing of + # the new key and value in the CH pairs of the current + # stack. The CH gating values are independent, which means + # that the current K/V could be stored in multiple pairs of the + # recurrent state, or not at all. + G = ( torch.einsum("ntc,hec->nhet", X, self.w_G) + self.b_G[None, :, :, None] ).sigmoid() + # That bas a bad idea + # G = F.dropout(G, self.attention_dropout, self.training) + V = torch.einsum("ntc,hdc->nhtd", X, self.w_V) K = torch.einsum("ntc,hdc->nhtd", X, self.w_K) + # We prepare the arguments for the parallel scan + A = 1 - G.sum(1) gated_V = torch.einsum("nhet,nhtd->netd", G, V) gated_K = torch.einsum("nhet,nhtd->netd", G, K) @@ -541,6 +566,12 @@ class Caterpillar(nn.Module): init_rec_V = self.rec_V[:, :, t0 - CL : t0] init_rec_K = self.rec_K[:, :, t0 - CL : t0] + # Here there is a trick: Since the stack at time t is computed + # by updating that at time t-L, the parallel scan operates + # with a period of L. To do so we split the time indexing in + # two axes, the second of size CL, and run the parallel scan + # using the other as the sequence index. + A = A.unflatten(2, (-1, CL)) gated_V = gated_V.unflatten(2, (-1, CL)) gated_K = gated_K.unflatten(2, (-1, CL)) @@ -548,38 +579,86 @@ class Caterpillar(nn.Module): next_V = pscan_dim(A, gated_V, init_rec_V, dim=2) next_K = pscan_dim(A, gated_K, init_rec_K, dim=2) + # Put back the sequence index + self.rec_V[:, :, t0:t1] = next_V.flatten(2, 3) self.rec_K[:, :, t0:t1] = next_K.flatten(2, 3) + if self.training and self.proba_flashback > 0.0: + # This piece of code makes the assumption that there is + # nothing informative before t0, otherwise we'd have to + # implement a cache for V and K too. This should not be + # too much of a problem since this is used only during + # train, where full sequence are available + + n = torch.arange(N, device=X.device)[:, None, None, None] + t = torch.arange(t0, t1, device=X.device)[None, None, :, None] + dv = torch.arange(DV, device=X.device)[None, None, None, :] + dk = torch.arange(DK, device=X.device)[None, None, None, :] + + u = ( + torch.rand(N, CH, t1 - t0, 1, device=X.device).mul(t).long() // CL + ) * CL + + src_time = t - u - t0 + src_head = torch.randint(H, (N, CH, t1 - t0, 1), device=X.device) + + mask = ( + torch.rand(N, CH, t1 - t0, DV, device=X.device) <= self.proba_flashback + ).long() + + self.rec_V[:, :, t0:t1] = ( + mask * V[n, src_head, src_time, dv] + + (1 - mask) * self.rec_V[:, :, t0:t1] + ) + + self.rec_K[:, :, t0:t1] = ( + mask * K[n, src_head, src_time, dk] + + (1 - mask) * self.rec_K[:, :, t0:t1] + ) + ###################################################################### # compute the readout Q = torch.einsum("ntc,hdc->nhtd", X, self.w_Q) - uv = moving_window( + # We build tensors NxHxTxFxL where N is the sample index, H + # the head, T the time, F the row in the caterpillar, and L + # the column in the caterpillar + + windowed_V = moving_window( self.rec_V[:, :, t0 - CL + 1 : t1], dim=2, win_dim=3, win_size=CL ) - uk = moving_window( + windowed_K = moving_window( self.rec_K[:, :, t0 - CL + 1 : t1], dim=2, win_dim=3, win_size=CL ) + # We have an attention score for each of the CHxCL values + ar = torch.einsum( "nhtd,nftld->nhtfl", Q, - uk, + windowed_K, ) / math.sqrt(DK) + # softmax can operate only on one dimension, hence the + # flattening + ar = ar.flatten(3).softmax(dim=3).view(ar.size()) ar = F.dropout(ar, self.attention_dropout, self.training) + # Compute the output for each head, flatten to concatenate + Y = torch.einsum( "nhtfl,nftld->nthd", ar, - uv, + windowed_V, ).flatten(2) + # Compute the final output + self.cache_Y[:, t0:t1] = Y @ self.w_O return BracketedSequence(self.cache_Y, t0, t1 - t0, bs.init_cache) @@ -591,7 +670,7 @@ class Caterpillar(nn.Module): class QKVAttention(nn.Module): def __init__( self, - dim_in, + dim_model, dim_qk, dim_v, nb_heads=1, @@ -607,10 +686,10 @@ class QKVAttention(nn.Module): self.attention_dropout = attention_dropout self.record_attention = False - self.w_q = randw(nb_heads, dim_qk, dim_in) - self.w_k = randw(nb_heads, dim_qk, dim_in) - self.w_v = randw(nb_heads, dim_v, dim_in) - self.w_o = randw(dim_v * nb_heads, dim_in) + self.w_q = randw(nb_heads, dim_qk, dim_model) + self.w_k = randw(nb_heads, dim_qk, dim_model) + self.w_v = randw(nb_heads, dim_v, dim_model) + self.w_o = randw(dim_v * nb_heads, dim_model) def forward(self, bs): x_q = bs.x @@ -714,7 +793,7 @@ class MyGPT(nn.Module): def attlayer(): if attention_layer == "mha": return QKVAttention( - dim_in=dim_model, + dim_model=dim_model, dim_qk=dim_keys, dim_v=dim_model // nb_heads, nb_heads=nb_heads, @@ -723,7 +802,7 @@ class MyGPT(nn.Module): ) elif attention_layer == "dumbrec": return DumbRec( - dim_in=dim_model, + dim_model=dim_model, dim_qk=dim_keys, dim_v=dim_rec_v, nb_heads=nb_heads, @@ -732,7 +811,7 @@ class MyGPT(nn.Module): ) elif attention_layer == "kvrec": return KVRec( - dim_in=dim_model, + dim_model=dim_model, dim_qk=dim_keys, dim_v=dim_rec_v, nb_heads=nb_heads, @@ -741,7 +820,7 @@ class MyGPT(nn.Module): ) elif attention_layer == "caterpillar": return Caterpillar( - dim_in=dim_model, + dim_model=dim_model, dim_qk=dim_keys, dim_v=dim_rec_v, nb_heads=nb_heads, @@ -881,7 +960,7 @@ if __name__ == "__main__": print("Basic check.") m = Caterpillar( - dim_in=4, + dim_model=4, dim_qk=3, dim_v=7, nb_heads=1,