X-Git-Url: https://fleuret.org/cgi-bin/gitweb/gitweb.cgi?a=blobdiff_plain;f=mygpt.py;h=7c8e9f4c894ad332e808d07f008ac4c569046bd1;hb=f0ea1f2375fa3a0be38970a58185cddee97dccef;hp=17f2f6d721a6c3848df0e65908589947eb6f3fd9;hpb=de0831357e74b1d1a61b1a41890e20ed1a2c9b96;p=mygptrnn.git diff --git a/mygpt.py b/mygpt.py index 17f2f6d..7c8e9f4 100755 --- a/mygpt.py +++ b/mygpt.py @@ -476,17 +476,18 @@ class Caterpillar(nn.Module): warnings.warn("Caterpillar", RuntimeWarning) - def randw(*d): - return nn.Parameter(torch.randn(*d) / math.sqrt(d[-1])) + def randw(*d, amplitude=None): + if amplitude is None: + amplitude = 1 / math.sqrt(d[-1]) + return nn.Parameter(amplitude * torch.randn(*d)) self.caterpillar_length = caterpillar_length self.caterpillar_height = caterpillar_height self.attention_dropout = attention_dropout - self.proba_flashback = 0.0 self.proba_gate_dropout = 0.0 - self.w_G = randw(nb_heads, caterpillar_height, dim_model) + self.w_G = randw(nb_heads, caterpillar_height, dim_model, amplitude=1e-5) self.b_G = nn.Parameter( torch.full( (nb_heads, caterpillar_height), -math.log(caterpillar_height - 1) @@ -498,8 +499,12 @@ class Caterpillar(nn.Module): self.w_Q = randw(nb_heads, dim_qk, dim_model) self.w_O = randw(dim_v * nb_heads, dim_model) - self.init_K_rec = randw(caterpillar_height, caterpillar_length, dim_qk) - self.init_V_rec = randw(caterpillar_height, caterpillar_length, dim_v) + self.init_K_rec = randw( + caterpillar_height, caterpillar_length, dim_qk, amplitude=1e-5 + ) + self.init_V_rec = randw( + caterpillar_height, caterpillar_length, dim_v, amplitude=1e-5 + ) def reset_inner_loss(self): self.acc_attention = 0 @@ -540,6 +545,9 @@ class Caterpillar(nn.Module): self.cache_Y = X.new_zeros(N, T, DM) + V = torch.einsum("ntc,hdc->nhtd", X, self.w_V) + K = torch.einsum("ntc,hdc->nhtd", X, self.w_K) + ###################################################################### # Compute the recurrent state @@ -550,28 +558,61 @@ class Caterpillar(nn.Module): # recurrent state, or not at all. G = ( - torch.einsum("ntc,hec->nhet", X, self.w_G) + self.b_G[None, :, :, None] + torch.einsum("ntc,hrc->nhrt", X, self.w_G) + self.b_G[None, :, :, None] ).sigmoid() - # Clip the gating to avoid values greater than 1 when several - # heads hit the same row - - G = G / G.sum(1, keepdim=True).clamp(min=1) + ###################################################################### + # The "flashbacks" if self.training and self.proba_gate_dropout > 0.0: + # This is a better implementation of "flashbacks". + + # G is NxHxExT where e is the caterpillar's row. + warnings.warn("gate dropout", RuntimeWarning) epsilon = 0.5 - V = torch.einsum("ntc,hdc->nhtd", X, self.w_V) - K = torch.einsum("ntc,hdc->nhtd", X, self.w_K) + dropout_start = ( + ( + torch.rand(G.size(), device=G.device) + .flatten(2, 3) + .sort(dim=2) + .indices + == 0 + ) + .unflatten(2, (CH, t1 - t0)) + .float() + ) + + dropout_tail = dropout_start.cumsum(dim=3) - dropout_start + + dropout_active = ( + torch.rand(N, 1, 1, 1, device=G.device) < self.proba_gate_dropout + ).long() + + dropout_start *= dropout_active + dropout_tail *= dropout_active + + G = ( + G + + dropout_start * (1 - epsilon - G.detach()) + - dropout_tail * G.detach() + ) + + ###################################################################### # We prepare the arguments for the parallel scan + # Clip the gating to avoid values greater than 1 when several + # heads hit the same row + + G = G / G.sum(1, keepdim=True).clamp(min=1) + A = 1 - G.sum(1) - gated_V = torch.einsum("nhet,nhtd->netd", G, V) - gated_K = torch.einsum("nhet,nhtd->netd", G, K) + gated_V = torch.einsum("nhrt,nhtd->nrtd", G, V) + gated_K = torch.einsum("nhrt,nhtd->nrtd", G, K) - # Initial recurrent state + # We start from cached values, which matters in inference init_rec_V = self.rec_V[:, :, t0 - CL : t0] init_rec_K = self.rec_K[:, :, t0 - CL : t0] @@ -595,42 +636,6 @@ class Caterpillar(nn.Module): self.rec_V[:, :, t0:t1] = next_V.flatten(2, 3) self.rec_K[:, :, t0:t1] = next_K.flatten(2, 3) - ################################################################# - - if self.training and self.proba_flashback > 0.0: - warnings.warn("flash back", RuntimeWarning) - # This piece of code makes the assumption that there is - # nothing informative before t0, otherwise we'd have to - # implement a cache for V and K too. This should not be - # too much of a problem since this is used only during - # train, where full sequence are available - - n = torch.arange(N, device=X.device)[:, None, None, None] - t = torch.arange(t0, t1, device=X.device)[None, None, :, None] - dv = torch.arange(DV, device=X.device)[None, None, None, :] - dk = torch.arange(DK, device=X.device)[None, None, None, :] - - u = ( - torch.rand(N, CH, t1 - t0, 1, device=X.device).mul(t).long() // CL - ) * CL - - src_time = t - u - t0 - src_head = torch.randint(H, (N, CH, t1 - t0, 1), device=X.device) - - mask = ( - torch.rand(N, CH, t1 - t0, DV, device=X.device) <= self.proba_flashback - ).long() - - self.rec_V[:, :, t0:t1] = ( - mask * V[n, src_head, src_time, dv] - + (1 - mask) * self.rec_V[:, :, t0:t1] - ) - - self.rec_K[:, :, t0:t1] = ( - mask * K[n, src_head, src_time, dk] - + (1 - mask) * self.rec_K[:, :, t0:t1] - ) - ###################################################################### # compute the readout