X-Git-Url: https://fleuret.org/cgi-bin/gitweb/gitweb.cgi?a=blobdiff_plain;f=mygpt.py;h=633ad642c19a3045064ef858c0ee494a7c733425;hb=6e87fe0cb8bd8a0042bbf7b2ede9d8ed0372fb6b;hp=d1acf22b1a6359cf2ffc31fe2d0885306674d6e4;hpb=ca56d3dfa53f3486da1d651f31f1e34ea0dc4652;p=mygptrnn.git diff --git a/mygpt.py b/mygpt.py index d1acf22..633ad64 100755 --- a/mygpt.py +++ b/mygpt.py @@ -10,6 +10,8 @@ # with a caching mechanism for keys and values to avoid a O(N^3) cost # for auto-regression. +# This implementation is equipped with RNN layers to replace the MHA + import math, warnings import torch, einops @@ -37,7 +39,7 @@ import ffutils # 1 for the successive tokens. # # Modules able to process brackets may implement a cache that is -# resetted when the input bracket starts at t=0 +# resetted when init_cache is True class BracketedSequence: @@ -441,6 +443,11 @@ class KVRec(nn.Module): ############################## +# Returns a tensor with an additional index at rank win_dim, that move +# along the same dimension as dim, on a domain {0...win_size-1}, and +# dim is restricted on a domain reduced by win_size-1 values. + + def moving_window(x, dim, win_dim, win_size): size, stride = x.size(), x.stride() size = size[:dim] + (size[dim] - win_size + 1,) + size[dim + 1 :] @@ -469,13 +476,17 @@ class Caterpillar(nn.Module): warnings.warn("Caterpillar", RuntimeWarning) - def randw(*d): - return nn.Parameter(torch.randn(*d) / math.sqrt(d[-1])) + def randw(*d, amplitude=None): + if amplitude is None: + amplitude = 1 / math.sqrt(d[-1]) + return nn.Parameter(amplitude * torch.randn(*d)) self.caterpillar_length = caterpillar_length self.caterpillar_height = caterpillar_height self.attention_dropout = attention_dropout + self.proba_gate_dropout = 0.0 + self.w_G = randw(nb_heads, caterpillar_height, dim_model) self.b_G = nn.Parameter( torch.full( @@ -488,8 +499,16 @@ class Caterpillar(nn.Module): self.w_Q = randw(nb_heads, dim_qk, dim_model) self.w_O = randw(dim_v * nb_heads, dim_model) - self.init_K_rec = randw(caterpillar_height, caterpillar_length, dim_qk) - self.init_V_rec = randw(caterpillar_height, caterpillar_length, dim_v) + self.init_K_rec = randw( + caterpillar_height, + caterpillar_length, + dim_qk, + ) + self.init_V_rec = randw( + caterpillar_height, + caterpillar_length, + dim_v, + ) def reset_inner_loss(self): self.acc_attention = 0 @@ -507,65 +526,136 @@ class Caterpillar(nn.Module): N = bs.x.size(0) T = bs.x.size(1) + H = self.w_V.size(0) DV = self.w_V.size(1) DK = self.w_K.size(1) - Dout = self.w_O.size(1) - CH = self.caterpillar_height - CL = self.caterpillar_length + DM = self.w_O.size(1) + R = self.caterpillar_height + L = self.caterpillar_length assert ( - t0 >= CL and (t1 - t0) % CL == 0 + t0 >= L and (t1 - t0) % L == 0 ), f"bs.first should be greater than caterpillar_length, and bs.nb should be a multiple of caterpillar_length" + # We cache values to deal efficiently with auto-regression + if bs.init_cache: - self.rec_V = X.new_zeros(N, CH, T, DV) - self.rec_K = X.new_zeros(N, CH, T, DK) + self.rec_V = X.new_zeros(N, R, T, DV) + self.rec_K = X.new_zeros(N, R, T, DK) # We start the recurrent sequences with optimizable # initial values. No idea if it helps. - self.rec_V[:, :, t0 - CL : t0] = self.init_V_rec[None, :, :, :] - self.rec_K[:, :, t0 - CL : t0] = self.init_K_rec[None, :, :, :] + self.rec_V[:, :, t0 - L : t0] = self.init_V_rec[None, :, :, :] + self.rec_K[:, :, t0 - L : t0] = self.init_K_rec[None, :, :, :] - self.cache_Y = X.new_zeros(N, T, Dout) + self.cache_Y = X.new_zeros(N, T, DM) + + V = torch.einsum("ntc,hdc->nhtd", X, self.w_V) + K = torch.einsum("ntc,hdc->nhtd", X, self.w_K) ###################################################################### # Compute the recurrent state - # This is the Gating sequence that modulates if they key and - # values should be stored in one of the CH pairs of the - # current stack. The CH gating values are independent, which - # means that the same thing could be stored up to CH times or - # not at all + # This is the Gating sequence that modulates the storing of + # the new key and value in the R pairs of the current + # stack. There are R independent gating values, which means + # that the current K/V may be stored in multiple pairs of the + # recurrent state, or not at all. G = ( - torch.einsum("ntc,hec->nhet", X, self.w_G) + self.b_G[None, :, :, None] + torch.einsum("ntc,hrc->nhrt", X, self.w_G) + self.b_G[None, :, :, None] ).sigmoid() - V = torch.einsum("ntc,hdc->nhtd", X, self.w_V) - K = torch.einsum("ntc,hdc->nhtd", X, self.w_K) + ###################################################################### + # Roll the gating indexes + + warnings.warn("rotating barrel", RuntimeWarning) + + # print(f"SANITY2 {N=} {H=} {R=} {t0=} {t1=} {G.size()=}") + + n_barrel = torch.arange(N, device=G.device)[:, None, None, None] + h_barrel = torch.arange(H, device=G.device)[None, :, None, None] + r_barrel = torch.arange(R, device=G.device)[None, None, :, None] + t_barrel = torch.arange(t1 - t0, device=G.device)[None, None, None, :] + r_barrel = (r_barrel + (t_barrel + t0) // L) % R + + # GG = G.gather(dim=2,index=r_barrel) + G = G[n_barrel, h_barrel, r_barrel, t_barrel] + + # print("SANITY", (GG-G).abs()) + # exit(0) + + ###################################################################### + # The "flashbacks" + + if self.training and self.proba_gate_dropout > 0.0: + # This is a better implementation of "flashbacks". + + # G is NxHxExT where e is the caterpillar's row. + + warnings.warn("gate dropout", RuntimeWarning) + epsilon = 0.5 + + dropout_head = ( + (torch.rand(N, H, 1, t1 - t0, device=G.device).sort(dim=3).indices == 0) + .expand_as(G) + .float() + ) + + dropout_tail = dropout_head.cumsum(dim=3) - dropout_head + + dropout_active = ( + torch.rand(N, 1, 1, 1, device=G.device) < self.proba_gate_dropout + ).long() + + dropout_head *= dropout_active + dropout_tail *= dropout_active + + G = ( + G + + dropout_head * (1 - epsilon - G.detach()) + - dropout_tail * G.detach() + ) + + ###################################################################### # We prepare the arguments for the parallel scan + # Clip the gating to avoid values greater than 1 when several + # heads hit the same row + + G = G / G.sum(1, keepdim=True).clamp(min=1) + A = 1 - G.sum(1) - gated_V = torch.einsum("nhet,nhtd->netd", G, V) - gated_K = torch.einsum("nhet,nhtd->netd", G, K) - init_rec_V = self.rec_V[:, :, t0 - CL : t0] - init_rec_K = self.rec_K[:, :, t0 - CL : t0] + # warnings.warn("harmonic recurrence", RuntimeWarning) + # har = torch.arange(t0, t1, device = G.device).float() + 1 + # A = har / (har + 1) + # G = G / har + + gated_V = torch.einsum("nhrt,nhtd->nrtd", G, V) + gated_K = torch.einsum("nhrt,nhtd->nrtd", G, K) + + # We start from cached values, which matters in inference + + init_rec_V = self.rec_V[:, :, t0 - L : t0] + init_rec_K = self.rec_K[:, :, t0 - L : t0] - # Here there is a trick: The parallel scan operates with a - # period of L, so we split the sequence indexing in two axes, - # the second of size CL, and run the parallel scan using the - # other alone as the sequence index. + ################################################################# + # Associative scan - A = A.unflatten(2, (-1, CL)) - gated_V = gated_V.unflatten(2, (-1, CL)) - gated_K = gated_K.unflatten(2, (-1, CL)) + # Here there is a trick: Since the stack at position t is + # computed by updating that at position t-L, the parallel + # scan operates with a period of L. To do so we split the + # sequence indexing in two axes, the second of size L, and + # run the parallel scan using the first as the sequence index. + + A = A.unflatten(2, (-1, L)) + gated_V = gated_V.unflatten(2, (-1, L)) + gated_K = gated_K.unflatten(2, (-1, L)) next_V = pscan_dim(A, gated_V, init_rec_V, dim=2) next_K = pscan_dim(A, gated_K, init_rec_K, dim=2) - # Put back the sequence index - self.rec_V[:, :, t0:t1] = next_V.flatten(2, 3) self.rec_K[:, :, t0:t1] = next_K.flatten(2, 3) @@ -579,14 +669,14 @@ class Caterpillar(nn.Module): # the column in the caterpillar windowed_V = moving_window( - self.rec_V[:, :, t0 - CL + 1 : t1], dim=2, win_dim=3, win_size=CL + self.rec_V[:, :, t0 - L + 1 : t1], dim=2, win_dim=3, win_size=L ) windowed_K = moving_window( - self.rec_K[:, :, t0 - CL + 1 : t1], dim=2, win_dim=3, win_size=CL + self.rec_K[:, :, t0 - L + 1 : t1], dim=2, win_dim=3, win_size=L ) - # We have an attention score for each of the CHxCL values + # We have an attention score for each of the RxL values ar = torch.einsum( "nhtd,nftld->nhtfl", @@ -715,7 +805,6 @@ class MyGPT(nn.Module): nb_blocks, nb_lines=None, caterpillar_height=None, - dim_rec_v=-1, causal=False, dropout=0.0, len_max=1e5, @@ -723,7 +812,12 @@ class MyGPT(nn.Module): ): super().__init__() - assert attention_layer in {"mha", "dumbrec", "kvrec", "caterpillar"} + assert attention_layer in { + "mha", + "dumbrec", + "kvrec", + "caterpillar", + }, f"Unknown attention operator {attention_layer}." if attention_layer == "caterpillar": assert nb_lines % caterpillar_height == 0 @@ -756,7 +850,7 @@ class MyGPT(nn.Module): return DumbRec( dim_model=dim_model, dim_qk=dim_keys, - dim_v=dim_rec_v, + dim_v=dim_model // nb_heads, nb_heads=nb_heads, nb_lines=nb_lines, attention_dropout=dropout, @@ -765,7 +859,7 @@ class MyGPT(nn.Module): return KVRec( dim_model=dim_model, dim_qk=dim_keys, - dim_v=dim_rec_v, + dim_v=dim_model // nb_heads, nb_heads=nb_heads, nb_lines=nb_lines, attention_dropout=dropout, @@ -774,7 +868,7 @@ class MyGPT(nn.Module): return Caterpillar( dim_model=dim_model, dim_qk=dim_keys, - dim_v=dim_rec_v, + dim_v=dim_model // nb_heads, nb_heads=nb_heads, caterpillar_length=self.caterpillar_length, caterpillar_height=self.caterpillar_height,