X-Git-Url: https://fleuret.org/cgi-bin/gitweb/gitweb.cgi?a=blobdiff_plain;f=mygpt.py;h=492a9bb96872e93f99ea9d9609ba64fe557c57fa;hb=e3d5af800ccd197580265709c4499bf281beecb8;hp=099847c95d9404d477b069d8cdf78a62304b3784;hpb=2434c00a82ebb0b23f45d891cc9f80324e3200bd;p=mygptrnn.git diff --git a/mygpt.py b/mygpt.py index 099847c..492a9bb 100755 --- a/mygpt.py +++ b/mygpt.py @@ -126,7 +126,6 @@ class AddPositionalEncoding(nn.Module): import pscan - # X is /.../xTxD A is /.../xT Y_init is /.../xD @@ -147,6 +146,18 @@ def pscan_dim(A, X, Y_init, dim=-2): return Y +def pscan_rgrad(grad_Y, A, X, Y_init, dim=-2, eps=1e-2): + with torch.no_grad(): + s_A, s_X = 0, 0 + for t in range(X.size(dim) - 1, 0, -1): + delta = (grad_Y[t] - s_A) / A[t].grad + s_A += A[t].grad * delta + A[t].grad = delta + delta = (grad_Y[t] - s_X) / X[t].grad + s_X += X[t].grad * delta + X[t].grad = delta + + def pscan_shape(A, X, Y_init): s = X.size() A = A.reshape(-1, s[-2]) @@ -491,16 +502,27 @@ class Caterpillar(nn.Module): self.caterpillar_height = caterpillar_height self.attention_dropout = attention_dropout - self.proba_gate_dropout = 0.0 + ###################################################################### + # sup_args + + x = kwargs.get("gate_dropout") + if x is None: + self.proba_gate_dropout = 0.0 + else: + self.proba_gate_dropout = float(x) + + logger(f"self.proba_gate_dropout {self.proba_gate_dropout}") - default_bg = kwargs.get("default_bg") - if default_bg is None: + x = kwargs.get("default_bg") + if x is None: default_bg = -math.log(caterpillar_height - 1) else: - default_bg = float(default_bg) + default_bg = float(x) logger(f"default_bg {default_bg}") + ###################################################################### + self.w_G = randw(nb_heads, caterpillar_height, dim_model) self.b_G = nn.Parameter(torch.full((nb_heads, caterpillar_height), default_bg)) @@ -554,8 +576,8 @@ class Caterpillar(nn.Module): self.rec_K = X.new_zeros(N, R, T, DK) # We start the recurrent sequences with optimizable # initial values. No idea if it helps. - self.rec_V[:, :, t0 - L : t0] = self.init_V_rec[None, :, :, :] - self.rec_K[:, :, t0 - L : t0] = self.init_K_rec[None, :, :, :] + self.rec_V[:, :, t0 - L : t0, :] = self.init_V_rec[None, :, :, :] + self.rec_K[:, :, t0 - L : t0, :] = self.init_K_rec[None, :, :, :] self.cache_Y = X.new_zeros(N, T, DM) @@ -581,84 +603,66 @@ class Caterpillar(nn.Module): G = G / G.sum(1, keepdim=True).clamp(min=1) ###################################################################### - # Roll the gating indexes - - # warnings.warn("rotating barrel", RuntimeWarning) - - # r_barrel = torch.arange(R, device=G.device)[None, None, :, None] - # t_barrel = torch.arange(t1 - t0, device=G.device)[None, None, None, :] - # r_barrel = (r_barrel + (t_barrel + t0) // L) % R - # G = G.gather(dim=2, index=r_barrel.expand_as(G)) - - ###################################################################### - # The "flashbacks" - if self.training and self.proba_gate_dropout > 0.0: - # This is a better implementation of "flashbacks". + def recurrence(G, V, K): + # We prepare the arguments for the parallel scan - # G is NxHxExT where e is the caterpillar's row. + A = 1 - G.sum(1) - warnings.warn("gate dropout", RuntimeWarning) - epsilon = 0.5 + gated_V = torch.einsum("nhrt,nhtd->nrtd", G, V) + gated_K = torch.einsum("nhrt,nhtd->nrtd", G, K) - dropout_head = ( - (torch.rand(N, H, 1, t1 - t0, device=G.device).sort(dim=3).indices == 0) - .expand_as(G) - .float() - ) + # We start from cached values, which matters in inference - dropout_tail = dropout_head.cumsum(dim=3) - dropout_head + init_rec_V = self.rec_V[:, :, t0 - L : t0] + init_rec_K = self.rec_K[:, :, t0 - L : t0] - dropout_active = ( - torch.rand(N, 1, 1, 1, device=G.device) < self.proba_gate_dropout - ).long() + # Associative scan - dropout_head *= dropout_active - dropout_tail *= dropout_active + # Here there is a trick: Since the stack at position t is + # computed by updating that at position t-L, the parallel + # scan operates with a period of L. To do so we split the + # sequence indexing in two axes, the second of size L, and + # run the parallel scan using the first as the sequence index. - G = ( - G - + dropout_head * (1 - epsilon - G.detach()) - - dropout_tail * G.detach() - ) + A = A.unflatten(2, (-1, L)) + gated_V = gated_V.unflatten(2, (-1, L)) + gated_K = gated_K.unflatten(2, (-1, L)) - ###################################################################### + next_V = pscan_dim(A, gated_V, init_rec_V, dim=2) + next_K = pscan_dim(A, gated_K, init_rec_K, dim=2) - # We prepare the arguments for the parallel scan + next_V = next_V.flatten(2, 3) + next_K = next_K.flatten(2, 3) - A = 1 - G.sum(1) + return next_V, next_K - # warnings.warn("harmonic recurrence", RuntimeWarning) - # har = torch.arange(t0, t1, device = G.device).float() + 1 - # A = har / (har + 1) - # G = G / har + ################################################################# - gated_V = torch.einsum("nhrt,nhtd->nrtd", G, V) - gated_K = torch.einsum("nhrt,nhtd->nrtd", G, K) + next_V, next_K = recurrence(G, V, K) - # We start from cached values, which matters in inference + if self.training and self.proba_gate_dropout > 0.0: + # G is NxHxRxT where r is the caterpillar's row. - init_rec_V = self.rec_V[:, :, t0 - L : t0] - init_rec_K = self.rec_K[:, :, t0 - L : t0] + warnings.warn("gate dropout", RuntimeWarning) - ################################################################# - # Associative scan + kill = ( + torch.rand(G.size(), device=G.device) <= self.proba_gate_dropout + ).float() - # Here there is a trick: Since the stack at position t is - # computed by updating that at position t-L, the parallel - # scan operates with a period of L. To do so we split the - # sequence indexing in two axes, the second of size L, and - # run the parallel scan using the first as the sequence index. + mask = 1 - kill - A = A.unflatten(2, (-1, L)) - gated_V = gated_V.unflatten(2, (-1, L)) - gated_K = gated_K.unflatten(2, (-1, L)) + masked_next_V, masked_next_K = recurrence(G * mask, V, K) - next_V = pscan_dim(A, gated_V, init_rec_V, dim=2) - next_K = pscan_dim(A, gated_K, init_rec_K, dim=2) + next_V = next_V.detach() + (masked_next_V - masked_next_V.detach()) / ( + 1 - self.proba_gate_dropout + ) + next_K = next_K.detach() + (masked_next_K - masked_next_K.detach()) / ( + 1 - self.proba_gate_dropout + ) - self.rec_V[:, :, t0:t1] = next_V.flatten(2, 3) - self.rec_K[:, :, t0:t1] = next_K.flatten(2, 3) + self.rec_V[:, :, t0:t1] = next_V + self.rec_K[:, :, t0:t1] = next_K ###################################################################### # compute the readout