X-Git-Url: https://fleuret.org/cgi-bin/gitweb/gitweb.cgi?a=blobdiff_plain;f=mtp_graph.cc;h=473d13ecb5a99bf6ec713fc9aca3500591ed3bbd;hb=513b8c10f328e5868082f09063c7e51669c952c7;hp=49b97f7595c2d78fb37fe9ad93c751856c1f01e8;hpb=cdf649aeef318cc5c3dae231d9b1c16352d13515;p=mtp.git diff --git a/mtp_graph.cc b/mtp_graph.cc index 49b97f7..473d13e 100644 --- a/mtp_graph.cc +++ b/mtp_graph.cc @@ -1,7 +1,7 @@ /* - * mtp is the ``Multi Tracked Path'', an implementation of the - * k-shortest path algorithm for multi-target tracking. + * mtp is the ``Multi Tracked Paths'', an implementation of the + * k-shortest paths algorithm for multi-target tracking. * * Copyright (c) 2012 Idiap Research Institute, http://www.idiap.ch/ * Written by Francois Fleuret @@ -109,8 +109,8 @@ MTPGraph::MTPGraph(int nb_vertices, int nb_edges, _source = &_vertices[source]; _sink = &_vertices[sink]; - for(int v = 0; v < _nb_vertices; v++) { - _vertices[v].id = v; + for(int k = 0; k < _nb_vertices; k++) { + _vertices[k].id = k; } for(int e = 0; e < nb_edges; e++) { @@ -157,8 +157,6 @@ void MTPGraph::print_dot(ostream *os) { (*os) << " edge [color=gray,arrowhead=open]" << endl; (*os) << " " << _source->id << " [peripheries=2];" << endl; (*os) << " " << _sink->id << " [peripheries=2];" << endl; - // (*os) << " " << _source->id << " [style=bold,color=red];" << endl; - // (*os) << " " << _sink->id << " [style=bold,color=green];" << endl; for(int k = 0; k < _nb_edges; k++) { Edge *e = _edges + k; // (*os) << " " << e->origin_vertex->id << " -> " << e->terminal_vertex->id @@ -205,8 +203,54 @@ void MTPGraph::force_positivized_lengths() { #endif } -// This method does not change the edge occupation. It update -// distance_from_source and pred_edge_toward_source. +int MTPGraph::is_dag() { + Vertex *v, *tv; + Edge *e; + + // We put everybody in the front + for(int k = 0; k < _nb_vertices; k++) { + _vertices[k].iteration = 0; + _front[k] = &_vertices[k]; + } + + int front_size = _nb_vertices, nb_with_incoming; + int iteration = 0; + int new_front_size, pred_front_size; + + do { + iteration++; + nb_with_incoming = 0; + + // We set the iteration field of all vertex with incoming edges to + // the current iteration value + for(int f = 0; f < front_size; f++) { + v = _front[f]; + for(e = v->leaving_edges; e; e = e->next_leaving_edge) { + tv = e->terminal_vertex; + tv->iteration = iteration; + } + } + + new_front_size = 0; + // We remove all the vertices without incoming edge + for(int f = 0; f < front_size; f++) { + v = _front[f]; + if(v->iteration == iteration) { + _front[new_front_size++] = v; + } + } + + pred_front_size = front_size; + front_size = new_front_size; + } while(front_size < pred_front_size); + + return front_size == 0; +} + +// This method does not change the edge occupation. It only set +// properly for every vertex the fields distance_from_source and +// pred_edge_toward_source. + void MTPGraph::find_shortest_path() { Vertex **tmp_front; int tmp_front_size; @@ -214,23 +258,23 @@ void MTPGraph::find_shortest_path() { Edge *e; scalar_t d; - for(int v = 0; v < _nb_vertices; v++) { - _vertices[v].distance_from_source = FLT_MAX; - _vertices[v].pred_edge_toward_source = 0; - _vertices[v].iteration = 0; + for(int k = 0; k < _nb_vertices; k++) { + _vertices[k].distance_from_source = FLT_MAX; + _vertices[k].pred_edge_toward_source = 0; + _vertices[k].iteration = 0; } int iteration = 0; - int _front_size = 0, _new_front_size; - _front[_front_size++] = _source; + int front_size = 0, new_front_size; + _front[front_size++] = _source; _source->distance_from_source = 0; do { - _new_front_size = 0; + new_front_size = 0; iteration++; - for(int f = 0; f < _front_size; f++) { + for(int f = 0; f < front_size; f++) { v = _front[f]; for(e = v->leaving_edges; e; e = e->next_leaving_edge) { d = v->distance_from_source + e->positivized_length; @@ -239,7 +283,7 @@ void MTPGraph::find_shortest_path() { tv->distance_from_source = d; tv->pred_edge_toward_source = e; if(tv->iteration < iteration) { - _new_front[_new_front_size++] = tv; + _new_front[new_front_size++] = tv; tv->iteration = iteration; } } @@ -250,10 +294,10 @@ void MTPGraph::find_shortest_path() { _new_front = _front; _front = tmp_front; - tmp_front_size = _new_front_size; - _new_front_size = _front_size; - _front_size = tmp_front_size; - } while(_front_size > 0); + tmp_front_size = new_front_size; + new_front_size = front_size; + front_size = tmp_front_size; + } while(front_size > 0); } void MTPGraph::find_best_paths(scalar_t *lengths) { @@ -267,8 +311,12 @@ void MTPGraph::find_best_paths(scalar_t *lengths) { _edges[e].positivized_length = _edges[e].length; } - // We use one iteration of find_shortest_path simply to propagate - // the distance to make all the edge lengths positive. + // Let's be a bit paranoid + ASSERT(is_dag()); + + // We use call find_shortest_path here to set properly the distance, + // so that we can make all the edge lengths positive at the first + // iteration. find_shortest_path(); do { @@ -278,7 +326,7 @@ void MTPGraph::find_best_paths(scalar_t *lengths) { total_length = 0.0; - // Do we reach the _sink? + // Do we reach the sink? if(_sink->pred_edge_toward_source) { // If yes, compute the length of the best path v = _sink;