X-Git-Url: https://fleuret.org/cgi-bin/gitweb/gitweb.cgi?a=blobdiff_plain;f=mtp_graph.cc;h=343ebf79a60a98d145138891d286ec70915280e0;hb=9aa2c8c57bbe0ac533d081fa3917aa037e65c766;hp=d3b921b791e6acfc2728702b0b593d0dc2cacdf0;hpb=abbaf6b4b4b8d10ee8e9054a3b8d262a2f242920;p=mtp.git diff --git a/mtp_graph.cc b/mtp_graph.cc index d3b921b..343ebf7 100644 --- a/mtp_graph.cc +++ b/mtp_graph.cc @@ -24,19 +24,18 @@ #include "mtp_graph.h" -#include #include -#include using namespace std; class Edge { public: - int id, occupied; + int occupied; scalar_t length, positivized_length; Vertex *origin_vertex, *terminal_vertex; - // These are the links in the origin_vertex leaving edge list + // These fields are used for the linked list of a vertex's leaving + // edge list. We have to do insertions / deletions. Edge *next_leaving_edge, *pred_leaving_edge; inline void invert(); @@ -44,23 +43,24 @@ public: class Vertex { public: - int id; Edge *leaving_edges; scalar_t distance_from_source; Edge *pred_edge_toward_source; + Vertex **heap_slot; - int iteration; // Used in find_shortest_path to know if we already - // added this vertex to the front Vertex(); + inline void add_leaving_edge(Edge *e); inline void del_leaving_edge(Edge *e); + inline void decrease_distance_in_heap(Vertex **heap); + inline void increase_distance_in_heap(Vertex **heap, int heap_size); }; ////////////////////////////////////////////////////////////////////// void Edge::invert() { length = - length; - positivized_length = 0; + positivized_length = - positivized_length; origin_vertex->del_leaving_edge(this); terminal_vertex->add_leaving_edge(this); Vertex *t = terminal_vertex; @@ -93,8 +93,53 @@ void Vertex::del_leaving_edge(Edge *e) { } } +void Vertex::decrease_distance_in_heap(Vertex **heap) { + Vertex **p, **h; + // There is some beauty in that + h = heap_slot; + while(h > heap && + (p = heap + (h - heap + 1) / 2 - 1, + (*p)->distance_from_source > (*h)->distance_from_source)) { + swap(*p, *h); + swap((*p)->heap_slot, (*h)->heap_slot); + h = p; + } +} + +void Vertex::increase_distance_in_heap(Vertex **heap, int heap_size) { + Vertex **c1, **c2, **h; + // omg, that's beautiful + h = heap_slot; + while(c1 = heap + 2 * (h - heap) + 1, + c1 < heap + heap_size && + (c2 = c1 + 1, + (*c1)->distance_from_source < (*h)->distance_from_source + || + (c2 < heap + heap_size && (*c2)->distance_from_source < (*h)->distance_from_source) + )) { + if(c2 < heap + heap_size && (*c2)->distance_from_source <= (*c1)->distance_from_source) { + swap(*c2, *h); + swap((*c2)->heap_slot, (*h)->heap_slot); + h = c2; + } else { + swap(*c1, *h); + swap((*c1)->heap_slot, (*h)->heap_slot); + h = c1; + } + } +} + ////////////////////////////////////////////////////////////////////// +static int compare_vertex(const void *v1, const void *v2) { + scalar_t delta = + (*((Vertex **) v1))->distance_from_source - + (*((Vertex **) v2))->distance_from_source; + if(delta < 0) return -1; + else if(delta > 0) return 1; + else return 0; +} + MTPGraph::MTPGraph(int nb_vertices, int nb_edges, int *vertex_from, int *vertex_to, int source, int sink) { @@ -103,33 +148,44 @@ MTPGraph::MTPGraph(int nb_vertices, int nb_edges, _edges = new Edge[_nb_edges]; _vertices = new Vertex[_nb_vertices]; - _front = new Vertex *[_nb_vertices]; - _new_front = new Vertex *[_nb_vertices]; + _heap = new Vertex *[_nb_vertices]; + _dp_order = new Vertex *[_nb_vertices]; _source = &_vertices[source]; _sink = &_vertices[sink]; - for(int k = 0; k < _nb_vertices; k++) { - _vertices[k].id = k; - } - for(int e = 0; e < nb_edges; e++) { _vertices[vertex_from[e]].add_leaving_edge(_edges + e); _edges[e].occupied = 0; - _edges[e].id = e; _edges[e].origin_vertex = _vertices + vertex_from[e]; _edges[e].terminal_vertex = _vertices + vertex_to[e]; } + for(int v = 0; v < _nb_vertices; v++) { + _heap[v] = &_vertices[v]; + _vertices[v].heap_slot = &_heap[v]; + } + paths = 0; nb_paths = 0; + + if(compute_dp_ranks()) { + // Here the distance_from_source field of every vertex is the + // number of DP iterations needed to update it. Hence we only have + // to process the vertex in that order. + for(int v = 0; v < _nb_vertices; v++) { _dp_order[v] = &_vertices[v]; } + qsort(_dp_order, _nb_vertices, sizeof(Vertex *), compare_vertex); + } else { + cerr << __FILE__ << ": This graph is not a DAG." << endl; + abort(); + } } MTPGraph::~MTPGraph() { delete[] _vertices; + delete[] _dp_order; + delete[] _heap; delete[] _edges; - delete[] _front; - delete[] _new_front; for(int p = 0; p < nb_paths; p++) delete paths[p]; delete[] paths; } @@ -139,9 +195,9 @@ MTPGraph::~MTPGraph() { void MTPGraph::print(ostream *os) { for(int k = 0; k < _nb_edges; k++) { Edge *e = _edges + k; - (*os) << e->origin_vertex->id + (*os) << e->origin_vertex - _vertices << " -> " - << e->terminal_vertex->id + << e->terminal_vertex - _vertices << " " << e->length; if(e->occupied) { @@ -156,14 +212,14 @@ void MTPGraph::print_dot(ostream *os) { (*os) << " rankdir=\"LR\";" << endl; (*os) << " node [shape=circle,width=0.75,fixedsize=true];" << endl; (*os) << " edge [color=gray,arrowhead=open]" << endl; - (*os) << " " << _source->id << " [peripheries=2];" << endl; - (*os) << " " << _sink->id << " [peripheries=2];" << endl; + (*os) << " " << _source - _vertices << " [peripheries=2];" << endl; + (*os) << " " << _sink - _vertices << " [peripheries=2];" << endl; for(int k = 0; k < _nb_edges; k++) { Edge *e = _edges + k; - // (*os) << " " << e->origin_vertex->id << " -> " << e->terminal_vertex->id - // << ";" - // << endl; - (*os) << " " << e->origin_vertex->id << " -> " << e->terminal_vertex->id + (*os) << " " + << e->origin_vertex - _vertices + << " -> " + << e->terminal_vertex - _vertices << " ["; if(e->occupied) { (*os) << "style=bold,color=black,"; @@ -188,119 +244,145 @@ void MTPGraph::force_positivized_lengths() { scalar_t residual_error = 0.0; scalar_t max_error = 0.0; #endif - for(int n = 0; n < _nb_vertices; n++) { - for(Edge *e = _vertices[n].leaving_edges; e; e = e->next_leaving_edge) { - if(e->positivized_length < 0) { + for(int k = 0; k < _nb_edges; k++) { + Edge *e = _edges + k; + + if(e->positivized_length < 0) { + #ifdef VERBOSE - residual_error -= e->positivized_length; - max_error = max(max_error, - e->positivized_length); + residual_error -= e->positivized_length; + max_error = max(max_error, - e->positivized_length); #endif - e->positivized_length = 0.0; - } + e->positivized_length = 0.0; } } #ifdef VERBOSE - cerr << "residual_error " << residual_error << " max_error " << residual_error << endl; + cerr << __FILE__ << ": residual_error " << residual_error << " max_error " << residual_error << endl; #endif } -int MTPGraph::is_dag() { +int MTPGraph::compute_dp_ranks() { Vertex *v; Edge *e; - // We put everybody in the front + // This procedure computes for each node the longest link from the + // source and abort if the graph is not a DAG. It works by removing + // successively nodes without predecessor: At the first iteration it + // removes the source, then the nodes with incoming edge only from + // the source, etc. If it can remove all the nodes that way, the + // graph is a DAG. If at some point it can not remove node anymore + // and there are some remaining nodes, the graph is not a DAG. The + // rank of a node is the iteration at which is it removed, and we + // set the distance_from_source fields to this value. + + Vertex **active = new Vertex *[_nb_vertices]; + + // All the nodes are active at first for(int k = 0; k < _nb_vertices; k++) { - _vertices[k].iteration = 0; - _front[k] = &_vertices[k]; + _vertices[k].distance_from_source = 0; + active[k] = &_vertices[k]; } - int iteration = 0; - int front_size = _nb_vertices, pred_front_size; + scalar_t rank = 1; + int nb_active = _nb_vertices, pred_nb_active; do { - iteration++; - - // We set the iteration field of all vertex with incoming edges to - // the current iteration value - for(int f = 0; f < front_size; f++) { - v = _front[f]; + // We set the distance_from_source field of all the vertices with incoming + // edges to the current rank value + for(int f = 0; f < nb_active; f++) { + v = active[f]; for(e = v->leaving_edges; e; e = e->next_leaving_edge) { - e->terminal_vertex->iteration = iteration; + e->terminal_vertex->distance_from_source = rank; } } - pred_front_size = front_size; - front_size = 0; + pred_nb_active = nb_active; + nb_active = 0; - // We remove all the vertices without incoming edge - for(int f = 0; f < pred_front_size; f++) { - v = _front[f]; - if(v->iteration == iteration) { - _front[front_size++] = v; + // We keep all the vertices with incoming nodes + for(int f = 0; f < pred_nb_active; f++) { + v = active[f]; + if(v->distance_from_source == rank) { + active[nb_active++] = v; } } - } while(front_size < pred_front_size); - return front_size == 0; -} + rank++; + } while(nb_active < pred_nb_active); -// This method does not change the edge occupation. It only set -// properly for every vertex the fields distance_from_source and -// pred_edge_toward_source. + delete[] active; -void MTPGraph::find_shortest_path() { - Vertex **tmp_front; + return nb_active == 0; +} + +void MTPGraph::dp_compute_distances() { Vertex *v, *tv; Edge *e; scalar_t d; -#ifdef DEBUG - if(is_dag()) { - cout << "find_shortest_path: DAG -> ok" << endl; - } else { - for(int e = 0; e < _nb_edges; e++) { - if(_edges[e].positivized_length < 0) abort(); + for(int k = 0; k < _nb_vertices; k++) { + _vertices[k].distance_from_source = FLT_MAX; + _vertices[k].pred_edge_toward_source = 0; + } + + _source->distance_from_source = 0; + + for(int k = 0; k < _nb_vertices; k++) { + v = _dp_order[k]; + for(e = v->leaving_edges; e; e = e->next_leaving_edge) { + d = v->distance_from_source + e->positivized_length; + tv = e->terminal_vertex; + if(d < tv->distance_from_source) { + tv->distance_from_source = d; + tv->pred_edge_toward_source = e; + tv->decrease_distance_in_heap(_heap); + } } - cout << "find_shortest_path: All positivized_length are positive -> ok" << endl; } -#endif +} + +// This method does not change the edge occupation. It only sets +// properly, for every vertex, the fields distance_from_source and +// pred_edge_toward_source. + +void MTPGraph::find_shortest_path() { + Vertex *v, *tv, **a, **b; + Edge *e; + scalar_t d; for(int k = 0; k < _nb_vertices; k++) { _vertices[k].distance_from_source = FLT_MAX; _vertices[k].pred_edge_toward_source = 0; - _vertices[k].iteration = 0; } - int iteration = 0; - - int front_size = 0, new_front_size; - _front[front_size++] = _source; + _heap_size = _nb_vertices; _source->distance_from_source = 0; + _source->decrease_distance_in_heap(_heap); do { - new_front_size = 0; - iteration++; - - for(int f = 0; f < front_size; f++) { - v = _front[f]; - for(e = v->leaving_edges; e; e = e->next_leaving_edge) { - d = v->distance_from_source + e->positivized_length; - tv = e->terminal_vertex; - if(d < tv->distance_from_source) { - tv->distance_from_source = d; - tv->pred_edge_toward_source = e; - if(tv->iteration < iteration) { - _new_front[new_front_size++] = tv; - tv->iteration = iteration; - } - } + // Get the closest to the source + v = _heap[0]; + + // Remove it from the heap (swap it with the last in the heap, and + // update the distance of that one) + _heap_size--; + a = _heap; + b = _heap + _heap_size; + swap(*a, *b); swap((*a)->heap_slot, (*b)->heap_slot); + _heap[0]->increase_distance_in_heap(_heap, _heap_size); + + // Now update the neighbors of the currently closest to the source + for(e = v->leaving_edges; e; e = e->next_leaving_edge) { + d = v->distance_from_source + e->positivized_length; + tv = e->terminal_vertex; + if(d < tv->distance_from_source) { + ASSERT(tv->heap_slot - _heap < _heap_size); + tv->distance_from_source = d; + tv->pred_edge_toward_source = e; + tv->decrease_distance_in_heap(_heap); } } - - tmp_front = _new_front; _new_front = _front; _front = tmp_front; - - front_size = new_front_size; - } while(front_size > 0); + } while(_heap_size > 0); } void MTPGraph::find_best_paths(scalar_t *lengths) { @@ -314,10 +396,8 @@ void MTPGraph::find_best_paths(scalar_t *lengths) { _edges[e].positivized_length = _edges[e].length; } - // We call find_shortest_path here to set properly the distances to - // the source, so that we can make all the edge lengths positive at - // the first iteration. - find_shortest_path(); + // Update the distances to the source in "good order" + dp_compute_distances(); do { update_positivized_lengths(); @@ -328,7 +408,8 @@ void MTPGraph::find_best_paths(scalar_t *lengths) { // Do we reach the sink? if(_sink->pred_edge_toward_source) { - // If yes, compute the length of the best path + // If yes, compute the length of the best path according to the + // original edge lengths v = _sink; while(v->pred_edge_toward_source) { total_length += v->pred_edge_toward_source->length; @@ -337,7 +418,7 @@ void MTPGraph::find_best_paths(scalar_t *lengths) { // If that length is negative if(total_length < 0.0) { #ifdef VERBOSE - cerr << "Found a path of length " << total_length << endl; + cerr << __FILE__ << ": Found a path of length " << total_length << endl; #endif // Invert all the edges along the best path v = _sink; @@ -357,42 +438,48 @@ void MTPGraph::find_best_paths(scalar_t *lengths) { // Put back the graph in its original state (i.e. invert edges which // have been inverted in the process) for(int k = 0; k < _nb_edges; k++) { - Edge *e = _edges + k; + e = _edges + k; if(e->occupied) { e->invert(); } } } int MTPGraph::retrieve_one_path(Edge *e, Path *path) { Edge *f, *next = 0; - int l = 0; + int l = 0, nb_occupied_next; if(path) { - path->nodes[l++] = e->origin_vertex->id; + path->nodes[l++] = e->origin_vertex - _vertices; path->length = e->length; } else l++; while(e->terminal_vertex != _sink) { if(path) { - path->nodes[l++] = e->terminal_vertex->id; + path->nodes[l++] = e->terminal_vertex - _vertices; path->length += e->length; } else l++; - int nb_choices = 0; + + nb_occupied_next = 0; for(f = e->terminal_vertex->leaving_edges; f; f = f->next_leaving_edge) { - if(f->occupied) { nb_choices++; next = f; } - if(nb_choices == 0) { - cerr << "retrieve_one_path: Non-sink end point." << endl; - abort(); - } - if(nb_choices > 1) { - cerr << "retrieve_one_path: Non node-disjoint paths." << endl; - abort(); - } + if(f->occupied) { nb_occupied_next++; next = f; } + } + +#ifdef DEBUG + if(nb_occupied_next == 0) { + cerr << __FILE__ << ": retrieve_one_path: Non-sink end point." << endl; + abort(); } + + else if(nb_occupied_next > 1) { + cerr << __FILE__ << ": retrieve_one_path: Non node-disjoint paths." << endl; + abort(); + } +#endif + e = next; } if(path) { - path->nodes[l++] = e->terminal_vertex->id; + path->nodes[l++] = e->terminal_vertex - _vertices; path->length += e->length; } else l++; @@ -401,6 +488,7 @@ int MTPGraph::retrieve_one_path(Edge *e, Path *path) { void MTPGraph::retrieve_disjoint_paths() { Edge *e; + int p, l; for(int p = 0; p < nb_paths; p++) delete paths[p]; delete[] paths; @@ -412,10 +500,10 @@ void MTPGraph::retrieve_disjoint_paths() { paths = new Path *[nb_paths]; - int p = 0; + p = 0; for(e = _source->leaving_edges; e; e = e->next_leaving_edge) { if(e->occupied) { - int l = retrieve_one_path(e, 0); + l = retrieve_one_path(e, 0); paths[p] = new Path(l); retrieve_one_path(e, paths[p]); p++;