X-Git-Url: https://fleuret.org/cgi-bin/gitweb/gitweb.cgi?a=blobdiff_plain;f=mtp.cc;h=b4006503dac3e37d760666a03c15ab0bc9cdd749;hb=3fe1f714514a55322e22717eeddf76f9f019c658;hp=529ba80f2d45c1ff48fa548835b525b7429d82a6;hpb=425acf9068dac38bccb97b12f1b423db5787e294;p=mtp.git diff --git a/mtp.cc b/mtp.cc index 529ba80..b400650 100644 --- a/mtp.cc +++ b/mtp.cc @@ -18,6 +18,10 @@ // Multi-Tracked Path +// Takes the graph description file as input and produces a dot file. + +// EXAMPLE: ./mtp ./graph2.txt | dot -T pdf -o- | xpdf - + // #define VERBOSE #include @@ -44,7 +48,7 @@ class Vertex; class Edge { public: - int occupied; + int id, occupied; scalar_t length, work_length; Vertex *terminal_vertex; Edge *next, *pred; @@ -52,65 +56,55 @@ public: class Vertex { public: - int id; - // These are the leaving edges - Edge *first_edge; - scalar_t distance; - + int id, iteration; + Edge *root_edge; + scalar_t distance_from_source; Vertex *pred_vertex; Edge *pred_edge; - Vertex() { first_edge = 0; } + Vertex() { root_edge = 0; } inline void add_edge(Edge *e) { - if(first_edge) { first_edge->pred = e; } - e->next = first_edge; + e->next = root_edge; e->pred = 0; - first_edge = e; + if(root_edge) { root_edge->pred = e; } + root_edge = e; } inline void del_edge(Edge *e) { - if(e == first_edge) { first_edge = e->next; } + if(e == root_edge) { root_edge = e->next; } if(e->pred) { e->pred->next = e->next; } if(e->next) { e->next->pred = e->pred; } } }; class Graph { -public: + void initialize_work_lengths(); + void update_work_length(); + void find_shortest_path(Vertex **front, Vertex **new_front); + int nb_vertices; Edge *edge_heap; Vertex *vertices; Vertex *source, *sink; - +public: Graph(int nb_vertices, int nb_edges, int *from, int *to, scalar_t *lengths, int source, int sink); + ~Graph(); - void initialize_work_lengths(); - void update_work_length(); - void find_shortest_path(); - void find_best_paths(); + void find_best_paths(int *result_edge_occupation); void print(); - void print_occupied_edges(); }; void Graph::print() { for(int n = 0; n < nb_vertices; n++) { - for(Edge *e = vertices[n].first_edge; e; e = e->next) { - cout << n << " -> " << e->terminal_vertex->id << " " << e->length << endl; - } - } -} - -void Graph::print_occupied_edges() { - for(int n = 0; n < nb_vertices; n++) { - for(Edge *e = vertices[n].first_edge; e; e = e->next) { + for(Edge *e = vertices[n].root_edge; e; e = e->next) { + cout << n << " -> " << e->terminal_vertex->id << " " << e->length; if(e->occupied) { - int a = n, b = e->terminal_vertex->id; - if(a > b) { int c = a; a = b; b = c; } - cout << a << " " << b << endl; + cout << " *"; } + cout << endl; } } } @@ -133,6 +127,7 @@ Graph::Graph(int nb_vrt, int nb_edges, for(int e = 0; e < nb_edges; e++) { vertices[from[e]].add_edge(&edge_heap[e]); edge_heap[e].occupied = 0; + edge_heap[e].id = e; edge_heap[e].length = lengths[e]; edge_heap[e].terminal_vertex = &vertices[to[e]]; } @@ -146,12 +141,12 @@ Graph::~Graph() { void Graph::initialize_work_lengths() { scalar_t length_min = 0; for(int n = 0; n < nb_vertices; n++) { - for(Edge *e = vertices[n].first_edge; e; e = e->next) { + for(Edge *e = vertices[n].root_edge; e; e = e->next) { length_min = min(e->length, length_min); } } for(int n = 0; n < nb_vertices; n++) { - for(Edge *e = vertices[n].first_edge; e; e = e->next) { + for(Edge *e = vertices[n].root_edge; e; e = e->next) { e->work_length = e->length - length_min; } } @@ -159,16 +154,14 @@ void Graph::initialize_work_lengths() { void Graph::update_work_length() { for(int n = 0; n < nb_vertices; n++) { - scalar_t d = vertices[n].distance; - for(Edge *e = vertices[n].first_edge; e; e = e->next) { - e->work_length += d - e->terminal_vertex->distance; + scalar_t d = vertices[n].distance_from_source; + for(Edge *e = vertices[n].root_edge; e; e = e->next) { + e->work_length += d - e->terminal_vertex->distance_from_source; } } } -void Graph::find_shortest_path() { - Vertex **front = new Vertex *[nb_vertices]; - Vertex **new_front = new Vertex *[nb_vertices]; +void Graph::find_shortest_path(Vertex **front, Vertex **new_front) { Vertex **tmp_front; int tmp_front_size; Vertex *v, *tv; @@ -176,9 +169,9 @@ void Graph::find_shortest_path() { #ifdef DEBUG for(int n = 0; n < nb_vertices; n++) { - for(Edge *e = vertices[n].first_edge; e; e = e->next) { + for(Edge *e = vertices[n].root_edge; e; e = e->next) { if(e->work_length < 0) { - cerr << "DEBUG error in find_shortest_path: Edge fixed lengths have to be positive." + cerr << "DEBUG error in find_shortest_path: Edge work lengths have to be positive." << endl; abort(); } @@ -187,27 +180,34 @@ void Graph::find_shortest_path() { #endif for(int v = 0; v < nb_vertices; v++) { - vertices[v].distance = FLT_MAX; + vertices[v].distance_from_source = FLT_MAX; vertices[v].pred_vertex = 0; vertices[v].pred_edge = 0; + vertices[v].iteration = 0; } + int iteration = 0; + int front_size = 0, new_front_size; front[front_size++] = source; - source->distance = 0; + source->distance_from_source = 0; do { new_front_size = 0; + iteration++; for(int f = 0; f < front_size; f++) { v = front[f]; - for(Edge *e = v->first_edge; e; e = e->next) { - d = v->distance + e->work_length; + for(Edge *e = v->root_edge; e; e = e->next) { + d = v->distance_from_source + e->work_length; tv = e->terminal_vertex; - if(d < tv->distance) { - tv->distance = d; + if(d < tv->distance_from_source) { + tv->distance_from_source = d; tv->pred_vertex = v; tv->pred_edge = e; - new_front[new_front_size++] = tv; + if(tv->iteration < iteration) { + new_front[new_front_size++] = tv; + tv->iteration = iteration; + } } } } @@ -220,41 +220,29 @@ void Graph::find_shortest_path() { new_front_size = front_size; front_size = tmp_front_size; } while(front_size > 0); - - delete[] front; - delete[] new_front; } -void Graph::find_best_paths() { +void Graph::find_best_paths(int *result_edge_occupation) { + Vertex **front = new Vertex *[nb_vertices]; + Vertex **new_front = new Vertex *[nb_vertices]; + scalar_t total_length; initialize_work_lengths(); do { -#ifdef VERBOSE - print(); -#endif - total_length = 0.0; - find_shortest_path(); + find_shortest_path(front, new_front); update_work_length(); // Do we reach the sink? if(sink->pred_edge) { -#ifdef VERBOSE - cout << "VERBOSE there is a path reaching the sink" << endl; -#endif - // If yes, compute the length of the best path for(Vertex *v = sink; v->pred_edge; v = v->pred_vertex) { total_length += v->pred_edge->length; } -#ifdef VERBOSE - cout << "VERBOSE total_length " << total_length << endl; -#endif - // If that length is negative if(total_length < 0.0) { // Invert all the edges along the best path @@ -270,6 +258,40 @@ void Graph::find_best_paths() { } } } while(total_length < 0.0); + + delete[] front; + delete[] new_front; + + for(int n = 0; n < nb_vertices; n++) { + Vertex *v = &vertices[n]; + for(Edge *e = v->root_edge; e; e = e->next) { + result_edge_occupation[e->id] = e->occupied; + } + } +} + +void find_best_paths(int nb_vertices, + int nb_edges, int *ea, int *eb, scalar_t *el, + int source, int sink, + int *result_edge_occupation) { + Graph graph(nb_vertices, nb_edges, ea, eb, el, source, sink); + graph.find_best_paths(result_edge_occupation); +} + +void dot_print(int nb_vertices, + int nb_edges, int *ea, int *eb, scalar_t *el, + int source, int sink, + int *edge_occupation) { + cout << "digraph {" << endl; + cout << " node[shape=circle];" << endl; + for(int e = 0; e < nb_edges; e++) { + if(edge_occupation[e]) { + cout << " " << ea[e] << " -> " << eb[e] << " [style=bold,color=black,label=\"" << el[e] << "\"];" << endl; + } else { + cout << " " << ea[e] << " -> " << eb[e] << " [color=gray,label=\"" << el[e] << "\"];" << endl; + } + } + cout << "}" << endl; } ////////////////////////////////////////////////////////////////////// @@ -291,28 +313,29 @@ int main(int argc, char **argv) { (*file) >> nb_vertices >> nb_edges; (*file) >> source >> sink; - cout << "INPUT nb_edges " << nb_edges << endl; - cout << "INPUT nb_vertices " << nb_vertices << endl; - cout << "INPUT source " << source << endl; - cout << "INPUT sink " << sink << endl; - - scalar_t *el = new scalar_t[nb_edges]; - int *ea = new int[nb_edges]; - int *eb = new int[nb_edges]; + scalar_t *edge_lengths = new scalar_t[nb_edges]; + int *vertex_from = new int[nb_edges]; + int *vertex_to = new int[nb_edges]; + int *result_edge_occupation = new int[nb_edges]; for(int e = 0; e < nb_edges; e++) { - (*file) >> ea[e] >> eb[e] >> el[e]; - cout << "INPUT_EDGE " << ea[e] << " " << eb[e] << " " << el[e] << endl; + (*file) >> vertex_from[e] >> vertex_to[e] >> edge_lengths[e]; } - Graph graph(nb_vertices, nb_edges, ea, eb, el, source, sink); + find_best_paths(nb_vertices, nb_edges, + vertex_from, vertex_to, edge_lengths, + source, sink, + result_edge_occupation); - graph.find_best_paths(); - graph.print_occupied_edges(); + dot_print(nb_vertices, nb_edges, + vertex_from, vertex_to, edge_lengths, + source, sink, + result_edge_occupation); - delete[] el; - delete[] ea; - delete[] eb; + delete[] result_edge_occupation; + delete[] edge_lengths; + delete[] vertex_from; + delete[] vertex_to; } else {