X-Git-Url: https://fleuret.org/cgi-bin/gitweb/gitweb.cgi?a=blobdiff_plain;f=minidiffusion.py;h=066cbbbe1fa365458ea163bea0e64e1cd2787c74;hb=cfa42f2006a72819ad507f60429ea5e26308e5d0;hp=2c54d196062ee1775385335d67c03ba29a34b3ca;hpb=a3c7617d0b5770edf6030502e4eac477a7218820;p=pytorch.git diff --git a/minidiffusion.py b/minidiffusion.py index 2c54d19..066cbbb 100755 --- a/minidiffusion.py +++ b/minidiffusion.py @@ -11,17 +11,24 @@ import matplotlib.pyplot as plt import torch, torchvision from torch import nn +from torch.nn import functional as F device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') +print(f'device {device}') + ###################################################################### def sample_gaussian_mixture(nb): p, std = 0.3, 0.2 - result = torch.empty(nb, 1).normal_(0, std) + result = torch.randn(nb, 1) * std result = result + torch.sign(torch.rand(result.size()) - p) / 2 return result +def sample_ramp(nb): + result = torch.min(torch.rand(nb, 1), torch.rand(nb, 1)) + return result + def sample_two_discs(nb): a = torch.rand(nb) * math.pi * 2 b = torch.rand(nb).sqrt() @@ -35,8 +42,9 @@ def sample_two_discs(nb): def sample_disc_grid(nb): a = torch.rand(nb) * math.pi * 2 b = torch.rand(nb).sqrt() - q = torch.randint(5, (nb,)) / 2.5 - 2 / 2.5 - r = torch.randint(5, (nb,)) / 2.5 - 2 / 2.5 + N = 4 + q = (torch.randint(N, (nb,)) - (N - 1) / 2) / ((N - 1) / 2) + r = (torch.randint(N, (nb,)) - (N - 1) / 2) / ((N - 1) / 2) b = b * 0.1 result = torch.empty(nb, 2) result[:, 0] = a.cos() * b + q @@ -58,11 +66,14 @@ def sample_mnist(nb): return result samplers = { - 'gaussian_mixture': sample_gaussian_mixture, - 'two_discs': sample_two_discs, - 'disc_grid': sample_disc_grid, - 'spiral': sample_spiral, - 'mnist': sample_mnist, + f.__name__.removeprefix('sample_') : f for f in [ + sample_gaussian_mixture, + sample_ramp, + sample_two_discs, + sample_disc_grid, + sample_spiral, + sample_mnist, + ] } ###################################################################### @@ -97,7 +108,7 @@ parser.add_argument('--learning_rate', parser.add_argument('--ema_decay', type = float, default = 0.9999, - help = 'EMA decay, < 0 is no EMA') + help = 'EMA decay, <= 0 is no EMA') data_list = ', '.join( [ str(k) for k in samplers ]) @@ -105,6 +116,9 @@ parser.add_argument('--data', type = str, default = 'gaussian_mixture', help = f'Toy data-set to use: {data_list}') +parser.add_argument('--no_window', + action='store_true', default = False) + args = parser.parse_args() if args.seed >= 0: @@ -121,26 +135,37 @@ class EMA: def __init__(self, model, decay): self.model = model self.decay = decay - if self.decay < 0: return - self.ema = { } + self.mem = { } with torch.no_grad(): for p in model.parameters(): - self.ema[p] = p.clone() + self.mem[p] = p.clone() def step(self): - if self.decay < 0: return with torch.no_grad(): for p in self.model.parameters(): - self.ema[p].copy_(self.decay * self.ema[p] + (1 - self.decay) * p) + self.mem[p].copy_(self.decay * self.mem[p] + (1 - self.decay) * p) - def copy(self): - if self.decay < 0: return + def copy_to_model(self): with torch.no_grad(): for p in self.model.parameters(): - p.copy_(self.ema[p]) + p.copy_(self.mem[p]) ###################################################################### +# Gets a pair (x, t) and appends t (scalar or 1d tensor) to x as an +# additional dimension / channel + +class TimeAppender(nn.Module): + def __init__(self): + super().__init__() + + def forward(self, u): + x, t = u + if not torch.is_tensor(t): + t = x.new_full((x.size(0),), t) + t = t.view((-1,) + (1,) * (x.dim() - 1)).expand_as(x[:,:1]) + return torch.cat((x, t), 1) + class ConvNet(nn.Module): def __init__(self, in_channels, out_channels): super().__init__() @@ -148,7 +173,8 @@ class ConvNet(nn.Module): ks, nc = 5, 64 self.core = nn.Sequential( - nn.Conv2d(in_channels, nc, ks, padding = ks//2), + TimeAppender(), + nn.Conv2d(in_channels + 1, nc, ks, padding = ks//2), nn.ReLU(), nn.Conv2d(nc, nc, ks, padding = ks//2), nn.ReLU(), @@ -161,8 +187,8 @@ class ConvNet(nn.Module): nn.Conv2d(nc, out_channels, ks, padding = ks//2), ) - def forward(self, x): - return self.core(x) + def forward(self, u): + return self.core(u) ###################################################################### # Data @@ -179,9 +205,10 @@ train_mean, train_std = train_input.mean(), train_input.std() # Model if train_input.dim() == 2: - nh = 64 + nh = 256 model = nn.Sequential( + TimeAppender(), nn.Linear(train_input.size(1) + 1, nh), nn.ReLU(), nn.Linear(nh, nh), @@ -193,10 +220,32 @@ if train_input.dim() == 2: elif train_input.dim() == 4: - model = ConvNet(train_input.size(1) + 1, train_input.size(1)) + model = ConvNet(train_input.size(1), train_input.size(1)) model.to(device) +print(f'nb_parameters {sum([ p.numel() for p in model.parameters() ])}') + +###################################################################### +# Generate + +def generate(size, T, alpha, alpha_bar, sigma, model, train_mean, train_std): + + with torch.no_grad(): + + x = torch.randn(size, device = device) + + for t in range(T-1, -1, -1): + output = model((x, t / (T - 1) - 0.5)) + z = torch.zeros_like(x) if t == 0 else torch.randn_like(x) + x = 1/torch.sqrt(alpha[t]) \ + * (x - (1-alpha[t]) / torch.sqrt(1-alpha_bar[t]) * output) \ + + sigma[t] * z + + x = x * train_std + train_mean + + return x + ###################################################################### # Train @@ -206,7 +255,7 @@ alpha = 1 - beta alpha_bar = alpha.log().cumsum(0).exp() sigma = beta.sqrt() -ema = EMA(model, decay = args.ema_decay) +ema = EMA(model, decay = args.ema_decay) if args.ema_decay > 0 else None for k in range(args.nb_epochs): @@ -217,95 +266,123 @@ for k in range(args.nb_epochs): x0 = (x0 - train_mean) / train_std t = torch.randint(T, (x0.size(0),) + (1,) * (x0.dim() - 1), device = x0.device) eps = torch.randn_like(x0) - input = torch.sqrt(alpha_bar[t]) * x0 + torch.sqrt(1 - alpha_bar[t]) * eps - input = torch.cat((input, t.expand_as(x0[:,:1]) / (T - 1) - 0.5), 1) - loss = (eps - model(input)).pow(2).mean() + xt = torch.sqrt(alpha_bar[t]) * x0 + torch.sqrt(1 - alpha_bar[t]) * eps + output = model((xt, t / (T - 1) - 0.5)) + loss = (eps - output).pow(2).mean() acc_loss += loss.item() * x0.size(0) optimizer.zero_grad() loss.backward() optimizer.step() - ema.step() + if ema is not None: ema.step() - if k%10 == 0: print(f'{k} {acc_loss / train_input.size(0)}') + print(f'{k} {acc_loss / train_input.size(0)}') -ema.copy() +if ema is not None: ema.copy_to_model() ###################################################################### -# Generate +# Plot -def generate(size, model): - with torch.no_grad(): - x = torch.randn(size, device = device) +model.eval() - for t in range(T-1, -1, -1): - z = torch.zeros_like(x) if t == 0 else torch.randn_like(x) - input = torch.cat((x, torch.full_like(x[:,:1], t / (T - 1) - 0.5)), 1) - x = 1/torch.sqrt(alpha[t]) \ - * (x - (1-alpha[t]) / torch.sqrt(1-alpha_bar[t]) * model(input)) \ - + sigma[t] * z +######################################## +# Nx1 -> histogram +if train_input.dim() == 2 and train_input.size(1) == 1: - x = x * train_std + train_mean + fig = plt.figure() + fig.set_figheight(5) + fig.set_figwidth(8) - return x + ax = fig.add_subplot(1, 1, 1) -###################################################################### -# Plot + x = generate((10000, 1), T, alpha, alpha_bar, sigma, + model, train_mean, train_std) -model.eval() + ax.set_xlim(-1.25, 1.25) + ax.spines.right.set_visible(False) + ax.spines.top.set_visible(False) -if train_input.dim() == 2: - fig = plt.figure() - ax = fig.add_subplot(1, 1, 1) + d = train_input.flatten().detach().to('cpu').numpy() + ax.hist(d, 25, (-1, 1), + density = True, + histtype = 'bar', edgecolor = 'white', color = 'lightblue', label = 'Train') - if train_input.size(1) == 1: + d = x.flatten().detach().to('cpu').numpy() + ax.hist(d, 25, (-1, 1), + density = True, + histtype = 'step', color = 'red', label = 'Synthesis') - x = generate((10000, 1), model) + ax.legend(frameon = False, loc = 2) - ax.set_xlim(-1.25, 1.25) + filename = f'minidiffusion_{args.data}.pdf' + print(f'saving {filename}') + fig.savefig(filename, bbox_inches='tight') - d = train_input.flatten().detach().to('cpu').numpy() - ax.hist(d, 25, (-1, 1), - density = True, - histtype = 'stepfilled', color = 'lightblue', label = 'Train') + if not args.no_window and hasattr(plt.get_current_fig_manager(), 'window'): + plt.get_current_fig_manager().window.setGeometry(2, 2, 1024, 768) + plt.show() - d = x.flatten().detach().to('cpu').numpy() - ax.hist(d, 25, (-1, 1), - density = True, - histtype = 'step', color = 'red', label = 'Synthesis') +######################################## +# Nx2 -> scatter plot +elif train_input.dim() == 2 and train_input.size(1) == 2: - ax.legend(frameon = False, loc = 2) + fig = plt.figure() + fig.set_figheight(6) + fig.set_figwidth(6) - elif train_input.size(1) == 2: + ax = fig.add_subplot(1, 1, 1) - x = generate((1000, 2), model) + x = generate((1000, 2), T, alpha, alpha_bar, sigma, + model, train_mean, train_std) - ax.set_xlim(-1.25, 1.25) - ax.set_ylim(-1.25, 1.25) - ax.set(aspect = 1) + ax.set_xlim(-1.5, 1.5) + ax.set_ylim(-1.5, 1.5) + ax.set(aspect = 1) + ax.spines.right.set_visible(False) + ax.spines.top.set_visible(False) - d = train_input[:x.size(0)].detach().to('cpu').numpy() - ax.scatter(d[:, 0], d[:, 1], - color = 'lightblue', label = 'Train') + d = train_input[:x.size(0)].detach().to('cpu').numpy() + ax.scatter(d[:, 0], d[:, 1], + s = 2.5, color = 'gray', label = 'Train') - d = x.detach().to('cpu').numpy() - ax.scatter(d[:, 0], d[:, 1], - facecolors = 'none', color = 'red', label = 'Synthesis') + d = x.detach().to('cpu').numpy() + ax.scatter(d[:, 0], d[:, 1], + s = 2.0, color = 'red', label = 'Synthesis') - ax.legend(frameon = False, loc = 2) + ax.legend(frameon = False, loc = 2) - filename = f'diffusion_{args.data}.pdf' + filename = f'minidiffusion_{args.data}.pdf' print(f'saving {filename}') fig.savefig(filename, bbox_inches='tight') - if hasattr(plt.get_current_fig_manager(), 'window'): + if not args.no_window and hasattr(plt.get_current_fig_manager(), 'window'): plt.get_current_fig_manager().window.setGeometry(2, 2, 1024, 768) plt.show() +######################################## +# NxCxHxW -> image elif train_input.dim() == 4: - x = generate((128,) + train_input.size()[1:], model) - x = 1 - x.clamp(min = 0, max = 255) / 255 - torchvision.utils.save_image(x, f'diffusion_{args.data}.png', nrow = 16, pad_value = 0.8) + + x = generate((128,) + train_input.size()[1:], T, alpha, alpha_bar, sigma, + model, train_mean, train_std) + + x = torchvision.utils.make_grid(x.clamp(min = 0, max = 255), + nrow = 16, padding = 1, pad_value = 64) + x = F.pad(x, pad = (2, 2, 2, 2), value = 64)[None] + + t = torchvision.utils.make_grid(train_input[:128], + nrow = 16, padding = 1, pad_value = 64) + t = F.pad(t, pad = (2, 2, 2, 2), value = 64)[None] + + result = 1 - torch.cat((t, x), 2) / 255 + + filename = f'minidiffusion_{args.data}.png' + print(f'saving {filename}') + torchvision.utils.save_image(result, filename) + +else: + + print(f'cannot plot result of size {train_input.size()}') ######################################################################