X-Git-Url: https://fleuret.org/cgi-bin/gitweb/gitweb.cgi?a=blobdiff_plain;f=mine_mnist.py;h=c22d7fee1969319e4ec79dafb2b673c9d0de69cc;hb=0e7d17bae1211d8019428ba4cd59e0af2a7ab074;hp=412c6242f423fde815bc1eeb8d853401323e3afc;hpb=e7b065a38122910f512b87ac9551b3ac535361a9;p=pytorch.git diff --git a/mine_mnist.py b/mine_mnist.py index 412c624..c22d7fe 100755 --- a/mine_mnist.py +++ b/mine_mnist.py @@ -1,11 +1,20 @@ #!/usr/bin/env python -import argparse +import argparse, math, sys +from copy import deepcopy -import math, sys, torch, torchvision +import torch, torchvision from torch import nn -from torch.nn import functional as F +import torch.nn.functional as F + +###################################################################### + +if torch.cuda.is_available(): + device = torch.device('cuda') + torch.backends.cudnn.benchmark = True +else: + device = torch.device('cpu') ###################################################################### @@ -28,27 +37,33 @@ parser.add_argument('--mnist_classes', ###################################################################### +def entropy(target): + probas = [] + for k in range(target.max() + 1): + n = (target == k).sum().item() + if n > 0: probas.append(n) + probas = torch.tensor(probas).float() + probas /= probas.sum() + return - (probas * probas.log()).sum().item() + +###################################################################### + args = parser.parse_args() if args.seed >= 0: torch.manual_seed(args.seed) -used_MNIST_classes = torch.tensor(eval('[' + args.mnist_classes + ']')) +used_MNIST_classes = torch.tensor(eval('[' + args.mnist_classes + ']'), device = device) ###################################################################### train_set = torchvision.datasets.MNIST('./data/mnist/', train = True, download = True) -train_input = train_set.train_data.view(-1, 1, 28, 28).float() -train_target = train_set.train_labels +train_input = train_set.train_data.view(-1, 1, 28, 28).to(device).float() +train_target = train_set.train_labels.to(device) test_set = torchvision.datasets.MNIST('./data/mnist/', train = False, download = True) -test_input = test_set.test_data.view(-1, 1, 28, 28).float() -test_target = test_set.test_labels - -if torch.cuda.is_available(): - used_MNIST_classes = used_MNIST_classes.cuda() - train_input, train_target = train_input.cuda(), train_target.cuda() - test_input, test_target = test_input.cuda(), test_target.cuda() +test_input = test_set.test_data.view(-1, 1, 28, 28).to(device).float() +test_target = test_set.test_labels.to(device) mu, std = train_input.mean(), train_input.std() train_input.sub_(mu).div_(std) @@ -58,10 +73,10 @@ test_input.sub_(mu).div_(std) # Returns a triplet of tensors (a, b, c), where a and b contain each # half of the samples, with a[i] and b[i] of same class for any i, and -# c is a 1d long tensor with the count of pairs per class used. +# c is a 1d long tensor real classes def create_image_pairs(train = False): - ua, ub = [], [] + ua, ub, uc = [], [], [] if train: input, target = train_input, train_target @@ -76,18 +91,25 @@ def create_image_pairs(train = False): hs = x.size(0)//2 ua.append(x.narrow(0, 0, hs)) ub.append(x.narrow(0, hs, hs)) + uc.append(target[used_indices]) a = torch.cat(ua, 0) b = torch.cat(ub, 0) + c = torch.cat(uc, 0) perm = torch.randperm(a.size(0)) a = a[perm].contiguous() b = b[perm].contiguous() - c = torch.tensor([x.size(0) for x in ua]) return a, b, c ###################################################################### +# Returns a triplet a, b, c where a are the standard MNIST images, c +# the classes, and b is a Nx2 tensor, eith for every n: +# +# b[n, 0] ~ Uniform(0, 10) +# b[n, 1] ~ b[n, 0] + Uniform(0, 0.5) + c[n] + def create_image_values_pairs(train = False): ua, ub = [], [] @@ -105,21 +127,66 @@ def create_image_values_pairs(train = False): target = target[used_indices].contiguous() a = input + c = target b = a.new(a.size(0), 2) b[:, 0].uniform_(10) b[:, 1].uniform_(0.5) b[:, 1] += b[:, 0] + target.float() - c = torch.tensor([(target == k).sum().item() for k in used_MNIST_classes]) - return a, b, c ###################################################################### -class NetImagePair(nn.Module): +def create_sequences_pairs(train = False): + nb, length = 10000, 1024 + noise_level = 1e-2 + + nb_classes = 4 + ha = torch.randint(nb_classes, (nb, ), device = device) + 1 + # hb = torch.randint(nb_classes, (nb, ), device = device) + hb = ha + + pos = torch.empty(nb, device = device).uniform_(0.0, 0.9) + a = torch.linspace(0, 1, length, device = device).view(1, -1).expand(nb, -1) + a = a - pos.view(nb, 1) + a = (a >= 0).float() * torch.exp(-a * math.log(2) / 0.1) + a = a * ha.float().view(-1, 1).expand_as(a) / (1 + nb_classes) + noise = a.new(a.size()).normal_(0, noise_level) + a = a + noise + + pos = torch.empty(nb, device = device).uniform_(0.5) + b1 = torch.linspace(0, 1, length, device = device).view(1, -1).expand(nb, -1) + b1 = b1 - pos.view(nb, 1) + b1 = (b1 >= 0).float() * torch.exp(-b1 * math.log(2) / 0.1) + pos = pos + hb.float() / (nb_classes + 1) * 0.5 + b2 = torch.linspace(0, 1, length, device = device).view(1, -1).expand(nb, -1) + b2 = b2 - pos.view(nb, 1) + b2 = (b2 >= 0).float() * torch.exp(-b2 * math.log(2) / 0.1) + + b = b1 + b2 + noise = b.new(b.size()).normal_(0, noise_level) + b = b + noise + + ###################################################################### + # for k in range(10): + # file = open(f'/tmp/dat{k:02d}', 'w') + # for i in range(a.size(1)): + # file.write(f'{a[k, i]:f} {b[k,i]:f}\n') + # file.close() + # exit(0) + ###################################################################### + + a = (a - a.mean()) / a.std() + b = (b - b.mean()) / b.std() + + return a, b, ha + +###################################################################### + +class NetForImagePair(nn.Module): def __init__(self): - super(NetImagePair, self).__init__() + super(NetForImagePair, self).__init__() self.features_a = nn.Sequential( nn.Conv2d(1, 16, kernel_size = 5), nn.MaxPool2d(3), nn.ReLU(), @@ -148,9 +215,9 @@ class NetImagePair(nn.Module): ###################################################################### -class NetImageValuesPair(nn.Module): +class NetForImageValuesPair(nn.Module): def __init__(self): - super(NetImageValuesPair, self).__init__() + super(NetForImageValuesPair, self).__init__() self.features_a = nn.Sequential( nn.Conv2d(1, 16, kernel_size = 5), nn.MaxPool2d(3), nn.ReLU(), @@ -178,12 +245,60 @@ class NetImageValuesPair(nn.Module): ###################################################################### +class NetForSequencePair(nn.Module): + + def feature_model(self): + return nn.Sequential( + nn.Conv1d(1, self.nc, kernel_size = 5), + nn.MaxPool1d(2), nn.ReLU(), + nn.Conv1d(self.nc, self.nc, kernel_size = 5), + nn.MaxPool1d(2), nn.ReLU(), + nn.Conv1d(self.nc, self.nc, kernel_size = 5), + nn.MaxPool1d(2), nn.ReLU(), + nn.Conv1d(self.nc, self.nc, kernel_size = 5), + nn.MaxPool1d(2), nn.ReLU(), + nn.Conv1d(self.nc, self.nc, kernel_size = 5), + nn.MaxPool1d(2), nn.ReLU(), + ) + + def __init__(self): + super(NetForSequencePair, self).__init__() + + self.nc = 32 + self.nh = 256 + + self.features_a = self.feature_model() + self.features_b = self.feature_model() + + self.fully_connected = nn.Sequential( + nn.Linear(2 * self.nc, self.nh), + nn.ReLU(), + nn.Linear(self.nh, 1) + ) + + def forward(self, a, b): + a = a.view(a.size(0), 1, a.size(1)) + a = self.features_a(a) + a = F.avg_pool1d(a, a.size(2)) + + b = b.view(b.size(0), 1, b.size(1)) + b = self.features_b(b) + b = F.avg_pool1d(b, b.size(2)) + + x = torch.cat((a.view(a.size(0), -1), b.view(b.size(0), -1)), 1) + return self.fully_connected(x) + +###################################################################### + if args.data == 'image_pair': create_pairs = create_image_pairs - model = NetImagePair() + model = NetForImagePair() elif args.data == 'image_values_pair': create_pairs = create_image_values_pairs - model = NetImageValuesPair() + model = NetForImageValuesPair() +elif args.data == 'sequence_pair': + create_pairs = create_sequences_pairs + model = NetForSequencePair() else: raise Exception('Unknown data ' + args.data) @@ -195,17 +310,11 @@ print('nb_parameters %d' % sum(x.numel() for x in model.parameters())) optimizer = torch.optim.Adam(model.parameters(), lr = 1e-3) -if torch.cuda.is_available(): - model.cuda() +model.to(device) for e in range(nb_epochs): - input_a, input_b, count = create_pairs(train = True) - - # The information bound is the entropy of the class distribution - class_proba = count.float() - class_proba /= class_proba.sum() - class_entropy = - (class_proba.log() * class_proba).sum().item() + input_a, input_b, classes = create_pairs(train = True) input_br = input_b[torch.randperm(input_b.size(0))] @@ -223,19 +332,15 @@ for e in range(nb_epochs): acc_mi /= (input_a.size(0) // batch_size) - print('%d %.04f %.04f' % (e, acc_mi / math.log(2), class_entropy / math.log(2))) + print('%d %.04f %.04f' % (e + 1, acc_mi / math.log(2), entropy(classes) / math.log(2))) sys.stdout.flush() ###################################################################### -input_a, input_b, count = create_pairs(train = False) +input_a, input_b, classes = create_pairs(train = False) for e in range(nb_epochs): - class_proba = count.float() - class_proba /= class_proba.sum() - class_entropy = - (class_proba.log() * class_proba).sum().item() - input_br = input_b[torch.randperm(input_b.size(0))] acc_mi = 0.0 @@ -248,6 +353,6 @@ for e in range(nb_epochs): acc_mi /= (input_a.size(0) // batch_size) -print('test %.04f %.04f'%(acc_mi / math.log(2), class_entropy / math.log(2))) +print('test %.04f %.04f'%(acc_mi / math.log(2), entropy(classes) / math.log(2))) ######################################################################