X-Git-Url: https://fleuret.org/cgi-bin/gitweb/gitweb.cgi?a=blobdiff_plain;f=main.py;h=6b00bbfd991178841468b75006f94121668c2b4f;hb=refs%2Fheads%2Fmaster;hp=7ba5193685e150bbf7870f911a7be4115f9f3558;hpb=982438ec146974f415072ff98523503fc8721538;p=culture.git diff --git a/main.py b/main.py index 7ba5193..5dceefc 100755 --- a/main.py +++ b/main.py @@ -5,20 +5,21 @@ # Written by Francois Fleuret -import math, sys, argparse, time, tqdm, os, datetime, warnings +import math, sys, argparse, time, tqdm, os, datetime, warnings, copy import torch, torchvision from torch import nn from torch.nn import functional as F -import ffutils +import ffutils, grids, attae -import mygpt -import sky, grids, quiz_machine +import threading, subprocess -import threading +# import torch.multiprocessing as mp -import torch.multiprocessing as mp +torch.set_float32_matmul_precision("high") + +# torch.set_default_dtype(torch.bfloat16) ###################################################################### @@ -34,29 +35,37 @@ parser.add_argument("--seed", type=int, default=0) parser.add_argument("--resume", action="store_true", default=False) -parser.add_argument("--max_percents_of_test_in_train", type=int, default=-1) - -######################################## +# ---------------------------------- parser.add_argument("--nb_epochs", type=int, default=10000) -parser.add_argument("--batch_size", type=int, default=None) +parser.add_argument("--batch_size", type=int, default=25) -parser.add_argument("--physical_batch_size", type=int, default=None) +parser.add_argument("--train_batch_size", type=int, default=None) -parser.add_argument("--nb_train_samples", type=int, default=None) +parser.add_argument("--eval_batch_size", type=int, default=25) -parser.add_argument("--nb_test_samples", type=int, default=None) +parser.add_argument("--nb_train_samples", type=int, default=50000) -parser.add_argument("--nb_new_c_quizzes_for_train", type=int, default=None) +parser.add_argument("--nb_test_samples", type=int, default=2500) -parser.add_argument("--nb_new_c_quizzes_for_test", type=int, default=None) +parser.add_argument("--nb_c_quizzes", type=int, default=5000) + +parser.add_argument("--c_quiz_multiplier", type=int, default=1) parser.add_argument("--learning_rate", type=float, default=5e-4) -######################################## +parser.add_argument("--nb_have_to_be_correct", type=int, default=3) + +parser.add_argument("--nb_have_to_be_wrong", type=int, default=1) + +parser.add_argument("--nb_mistakes_to_be_wrong", type=int, default=5) + +# ---------------------------------- + +parser.add_argument("--model_type", type=str, default="standard") -parser.add_argument("--model", type=str, default=None) +parser.add_argument("--model", type=str, default="37M") parser.add_argument("--dim_model", type=int, default=None) @@ -68,29 +77,29 @@ parser.add_argument("--nb_heads", type=int, default=None) parser.add_argument("--nb_blocks", type=int, default=None) -parser.add_argument("--dropout", type=float, default=0.1) +parser.add_argument("--dropout", type=float, default=0.5) -######################################## - -parser.add_argument("--deterministic_synthesis", action="store_true", default=False) - -parser.add_argument("--problem", type=str, default="grids") +# ---------------------------------- parser.add_argument("--nb_threads", type=int, default=1) parser.add_argument("--gpus", type=str, default="all") -parser.add_argument("--nb_gpts", type=int, default=5) +# ---------------------------------- + +parser.add_argument("--nb_models", type=int, default=5) + +parser.add_argument("--diffusion_nb_iterations", type=int, default=25) -parser.add_argument("--accuracy_to_make_c_quizzes", type=float, default=0.9) +parser.add_argument("--diffusion_proba_corruption", type=float, default=0.05) -parser.add_argument("--proba_understands", type=float, default=0.99) +parser.add_argument("--accuracy_to_make_c_quizzes", type=float, default=0.95) -parser.add_argument("--proba_not_understands", type=float, default=0.5) +parser.add_argument("--proba_prompt_noise", type=float, default=0.05) -parser.add_argument("--generation_temperature", type=float, default=2.0) +parser.add_argument("--proba_hint", type=float, default=0.25) -parser.add_argument("--dirty_debug", action="store_true", default=False) +parser.add_argument("--quizzes", type=str, default=None) ###################################################################### @@ -99,26 +108,14 @@ grids_tasks = ", ".join( ) parser.add_argument( - "--grids_tasks", + "--grids_world_tasks", type=str, - default=None, - help="A comma-separated subset of: " + grids_tasks + ", or None for all.", + default="replace_color,translate,grow,frame", + help="A comma-separated subset of: " + grids_tasks + ".", ) ###################################################################### -parser.add_argument("--sky_height", type=int, default=6) - -parser.add_argument("--sky_width", type=int, default=8) - -parser.add_argument("--sky_nb_birds", type=int, default=3) - -parser.add_argument("--sky_nb_iterations", type=int, default=2) - -parser.add_argument("--sky_speed", type=int, default=3) - -###################################################################### - args = parser.parse_args() if args.result_dir is None: @@ -126,19 +123,6 @@ if args.result_dir is None: ###################################################################### -default_args = { - "model": "37M", - "batch_size": 25, - "nb_train_samples": 100000, - "nb_test_samples": 10000, -} - -for k, v in default_args.items(): - if getattr(args, k) is None: - setattr(args, k, v) - -###################################################################### - default_model_args = { "17K": { "dim_model": 32, @@ -187,8 +171,9 @@ else: ###################################################################### if args.resume: - assert os.path.isdir(args.result_dir) - + if not os.path.isdir(args.result_dir): + print(f"Trying to resume from a non-existing result dir {args.result_dir}.") + exit(1) else: try: os.mkdir(args.result_dir) @@ -210,6 +195,9 @@ if args.seed >= 0: def log_string(s): + """print the given string prefixed with a time stamps, and log it + into log_file is not None""" + t = time.strftime("%Y%m%d-%H:%M:%S ", time.localtime()) if log_file is not None: @@ -220,9 +208,17 @@ def log_string(s): sys.stdout.flush() +###################################################################### +# Create a time-stamped archive of the source code + +with open("this_run.sh", "w") as f: + f.write(f"{' '.join(sys.argv)}\n") + now = time.strftime("%Y%m%d-%H%M%S", time.localtime()) -os.system(f"tar zcvf {args.result_dir}/src-{now}.tgz *.py") +os.system(f"tar zcvf {args.result_dir}/src-{now}.tgz *.py *.sh") + +###################################################################### log_string(f"argv {' '.join(sys.argv)}") @@ -245,415 +241,760 @@ else: assert len(gpus) == 0 main_device = torch.device("cpu") -if args.dirty_debug: - args.nb_train_samples = 2500 - args.nb_test_samples = 100 - -if args.physical_batch_size is None: - args.physical_batch_size = args.batch_size +if args.train_batch_size is None: + args.train_batch_size = args.batch_size else: - assert args.batch_size % args.physical_batch_size == 0 + assert args.batch_size % args.train_batch_size == 0 assert args.nb_train_samples % args.batch_size == 0 assert args.nb_test_samples % args.batch_size == 0 -if args.problem == "sky": - problem = sky.Sky( - height=args.sky_height, - width=args.sky_width, - nb_birds=args.sky_nb_birds, - nb_iterations=args.sky_nb_iterations, - speed=args.sky_speed, - max_nb_cached_chunks=len(gpus) * args.nb_train_samples // 100, - chunk_size=100, - nb_threads=args.nb_threads, - ) - back_accuracy = False -elif args.problem == "grids": - problem = grids.Grids( - max_nb_cached_chunks=len(gpus) * args.nb_train_samples // 100, - chunk_size=100, - nb_threads=args.nb_threads, - tasks=args.grids_tasks, - ) - back_accuracy = True -else: - raise ValueError - -problem.save_some_examples(args.result_dir) - -quiz_machine = quiz_machine.QuizMachine( - problem=problem, - nb_train_samples=args.nb_train_samples, - nb_test_samples=args.nb_test_samples, - back_accuracy=back_accuracy, - batch_size=args.physical_batch_size, - result_dir=args.result_dir, - logger=log_string, - device=main_device, -) +###################################################################### + + +def optimizer_to(optim, device): + """Move the optimizer optim to the device""" + for param in optim.state.values(): + # Not sure there are any global tensors in the state dict + if isinstance(param, torch.Tensor): + param.data = param.data.to(device) + if param._grad is not None: + param._grad.data = param._grad.data.to(device) + elif isinstance(param, dict): + for subparam in param.values(): + if isinstance(subparam, torch.Tensor): + subparam.data = subparam.data.to(device) + if subparam._grad is not None: + subparam._grad.data = subparam._grad.data.to(device) + ###################################################################### -log_string(f"main_device {main_device} gpus {[ str(g) for g in gpus]}") -vocabulary_size = quiz_machine.vocabulary_size() +def generate_quiz_set(nb_samples, c_quizzes, c_quiz_multiplier=1): + if c_quizzes is None: + quizzes = problem.generate_w_quizzes(nb_samples) + nb_w_quizzes = quizzes.size(0) + nb_c_quizzes = 0 + else: + if c_quiz_multiplier > 1: + n = min(c_quiz_multiplier, (nb_samples // 2) // c_quizzes.size(0)) + body = c_quizzes.repeat(n, 1) + if n < c_quiz_multiplier: + tail = c_quizzes[ + torch.randperm(c_quizzes.size(0))[: nb_samples // 2 - body.size(0)] + ] + c_quizzes = torch.cat([body, tail], dim=0) + else: + c_quizzes = body + + if c_quizzes.size(0) > nb_samples // 2: + i = torch.randperm(c_quizzes.size(0))[: nb_samples // 2] + c_quizzes = c_quizzes[i] + + w_quizzes = problem.generate_w_quizzes(nb_samples - c_quizzes.size(0)) + + quizzes = torch.cat([w_quizzes, c_quizzes], dim=0) + nb_w_quizzes = w_quizzes.size(0) + nb_c_quizzes = c_quizzes.size(0) + + i = torch.randperm(quizzes.size(0), device=quizzes.device) + quizzes = quizzes[i].contiguous() + + log_string(f"quiz_set nb_w_quizzes {nb_w_quizzes} nb_c_quizzes {nb_c_quizzes}") + + return quizzes -log_string(f"vocabulary_size {vocabulary_size}") ###################################################################### -def run_tests(model, quiz_machine, deterministic_synthesis, local_device=main_device): - with torch.autograd.no_grad(): - model.eval().to(local_device) +def add_hints_imt(imt_set): + """Set every component of the mask to zero with probability + args.proba_hint, and for each component set to zero, copy the + corresponding value from the target into the input + + """ + input, masks, targets = imt_set.unbind(dim=1) + # h = torch.rand(masks.size(), device=masks.device) - masks + # t = h.sort(dim=1).values[:, args.nb_hints, None] + # mask_hints = (h < t).long() + mask_hints = ( + torch.rand(input.size(), device=input.device) < args.proba_hint + ).long() * masks + masks = (1 - mask_hints) * masks + input = (1 - mask_hints) * input + mask_hints * targets + return torch.cat([input[:, None], masks[:, None], targets[:, None]], dim=1) + + +def add_noise_imt(imt_set): + """Replace every component of the input by a random value with + probability args.proba_prompt_noise.""" + input, masks, targets = imt_set.unbind(dim=1) + noise = problem.pure_noise(input.size(0), input.device) + change = (1 - masks) * ( + torch.rand(input.size(), device=input.device) < args.proba_prompt_noise + ).long() + input = (1 - change) * input + change * noise + return torch.cat([input[:, None], masks[:, None], targets[:, None]], dim=1) + - nb_test_samples, acc_test_loss = 0, 0.0 - nb_samples_accumulated = 0 +###################################################################### +# Prediction - for input in quiz_machine.batches(model, split="test"): - input = input.to(local_device) - bs = model(mygpt.BracketedSequence(input)) - output = bs.x +def samples_for_prediction_imt(input): + nb = input.size(0) + masks = input.new_zeros(input.size()) + u = F.one_hot(torch.randint(4, (nb,), device=masks.device), num_classes=4) + masks.view(nb, 4, -1)[...] = u[:, :, None] + targets = input + input = (1 - masks) * targets - loss = F.cross_entropy(output.transpose(1, 2), input) + return torch.cat([input[:, None], masks[:, None], targets[:, None]], dim=1) - acc_test_loss += loss.item() * input.size(0) - nb_test_samples += input.size(0) +def ae_predict(model, imt_set, local_device=main_device): + model.eval().to(local_device) - test_perplexity = math.exp(min(100, acc_test_loss / nb_test_samples)) + record = [] - log_string(f"test_perplexity {n_epoch} model {model.id} {test_perplexity}") + src = tqdm.tqdm( + imt_set.split(args.eval_batch_size), + dynamic_ncols=True, + desc="predict", + total=imt_set.size(0) // args.eval_batch_size, + delay=10, + ) - model.main_test_accuracy = quiz_machine.produce_results( - n_epoch=n_epoch, - model=model, - result_dir=args.result_dir, - deterministic_synthesis=deterministic_synthesis, + for imt in src: + # some paranoia + imt = imt.clone() + imt[:, 0] = imt[:, 0] * (1 - imt[:, 1]) + + with torch.amp.autocast(device_type="cuda", dtype=torch.bfloat16): + logits = model(imt[:, 0] * 2 + imt[:, 1]) + dist = torch.distributions.categorical.Categorical(logits=logits) + result = (1 - imt[:, 1]) * imt[:, 0] + imt[:, 1] * dist.sample() + record.append(result) + + return torch.cat(record) + + +def predict_the_four_grids( + model, input, with_noise=False, with_hints=False, local_device=main_device +): + input = input[:, None, :].expand(-1, 4, -1).reshape(-1, input.size(1)) + nb = input.size(0) + masks = input.new_zeros(input.size()) + u = F.one_hot(torch.arange(nb, device=masks.device) % 4, num_classes=4) + masks.view(nb, 4, -1)[...] = u[:, :, None] + targets = input + input = (1 - masks) * targets + imt_set = torch.cat([input[:, None], masks[:, None], targets[:, None]], dim=1) + + if with_hints: + imt_set = add_hints_imt(imt_set) + + if with_noise: + imt_set = add_noise_imt(imt_set) + + result = ae_predict(model, imt_set, local_device=local_device) + result = (result * masks).reshape(-1, 4, result.size(1)).sum(dim=1) + + return result + + +###################################################################### + + +def samples_for_generation_imt(input): + nb = input.size(0) + probs_iterations = 0.1 ** torch.linspace( + 0, 1, args.diffusion_nb_iterations, device=input.device + ) + probs_iterations = probs_iterations[None, :] / probs_iterations.sum() + probs_iterations = probs_iterations.expand(nb, -1) + dist = torch.distributions.categorical.Categorical(probs=probs_iterations) + t = dist.sample() + 1 + r = torch.rand(input.size(), device=input.device) + proba_erased = 1 - (1 - args.diffusion_proba_corruption) ** t + mask_erased = (r <= proba_erased[:, None]).long() + + noise = problem.pure_noise(nb, input.device) + targets = input + input = (1 - mask_erased) * input + mask_erased * noise + masks = input.new_full(input.size(), 1) + + return torch.cat([input[:, None], masks[:, None], targets[:, None]], dim=1) + + +def prioritized_rand(low): + x = torch.rand(low.size(), device=low.device).sort(dim=1, descending=True).values + k = torch.rand(low.size(), device=low.device) + low.long() + k = k.sort(dim=1).indices + y = x.new(x.size()) + y.scatter_(dim=1, index=k, src=x) + return y + + +def ae_generate(model, nb, local_device=main_device): + model.eval().to(local_device) + + # We loop through the iterations first and through the + # mini-batches second so that we keep only the samples that have + # not stabilized + + all_input = problem.pure_noise(nb, local_device) + all_masks = all_input.new_full(all_input.size(), 1) + all_changed = torch.full((all_input.size(0),), True, device=all_input.device) + + for it in range(args.diffusion_nb_iterations): + # log_string(f"nb_changed {all_changed.long().sum().item()}") + + if not all_changed.any(): + break + + sub_input = all_input[all_changed].clone() + sub_masks = all_masks[all_changed].clone() + sub_changed = all_changed[all_changed].clone() + + src = zip( + sub_input.split(args.eval_batch_size), + sub_masks.split(args.eval_batch_size), + sub_changed.split(args.eval_batch_size), ) + for input, masks, changed in src: + with torch.amp.autocast(device_type="cuda", dtype=torch.bfloat16): + logits = model(input * 2 + masks) + dist = torch.distributions.categorical.Categorical(logits=logits) + output = dist.sample() + r = prioritized_rand(input != output) + mask_changes = (r <= args.diffusion_proba_corruption).long() * masks + update = (1 - mask_changes) * input + mask_changes * output + changed[...] = changed & (update != input).max(dim=1).values + input[...] = update -def one_epoch(model, quiz_machine, local_device=main_device): - model.to(local_device).train() + a = all_changed.clone() + all_input[a] = sub_input + all_masks[a] = sub_masks + all_changed[a] = sub_changed - optimizer = torch.optim.Adam(model.parameters(), lr=args.learning_rate) + return all_input - nb_train_samples, acc_train_loss = 0, 0.0 - for input in quiz_machine.batches(model, split="train"): - input = input.to(local_device) +###################################################################### - if nb_train_samples % args.batch_size == 0: - optimizer.zero_grad() - output = model(mygpt.BracketedSequence(input)).x - loss = F.cross_entropy(output.transpose(1, 2), input) - acc_train_loss += loss.item() * input.size(0) +def one_epoch(model, n_epoch, c_quizzes, train=True, local_device=main_device): + quizzes = generate_quiz_set( + args.nb_train_samples if train else args.nb_test_samples, + c_quizzes, + args.c_quiz_multiplier, + ) + + q_p, q_g = quizzes.to(local_device).chunk(2) + + # Half of the samples train the prediction, and we inject noise in + # all, and hints in half + b_p = samples_for_prediction_imt(q_p) + b_p = add_noise_imt(b_p) + half = torch.rand(b_p.size(0)) < 0.5 + b_p[half] = add_hints_imt(b_p[half]) + + # The other half are denoising examples for the generation + b_g = samples_for_generation_imt(q_g) + + imt_set = torch.cat([b_p, b_g]) + imt_set = imt_set[torch.randperm(imt_set.size(0), device=imt_set.device)] + + if train: + label = "train" + model.train().to(local_device) + optimizer_to(model.optimizer, local_device) + batch_size = args.train_batch_size + else: + label = "test" + model.eval().to(local_device) + batch_size = args.eval_batch_size + + nb_samples, acc_loss = 0, 0.0 + + for imt in tqdm.tqdm( + imt_set.split(batch_size), + dynamic_ncols=True, + desc=label, + total=quizzes.size(0) // batch_size, + delay=10, + ): + input, masks, targets = imt.unbind(dim=1) + if train and nb_samples % args.batch_size == 0: + model.optimizer.zero_grad() + + with torch.amp.autocast(device_type="cuda", dtype=torch.bfloat16): + logits = model(input * 2 + masks) + + loss_per_token = F.cross_entropy( + logits.transpose(1, 2), targets, reduction="none" + ) + loss = (loss_per_token * masks).mean() + acc_loss += loss.item() * imt.size(0) + nb_samples += imt.size(0) + + if train: + loss.backward() - nb_train_samples += input.size(0) + if nb_samples % args.batch_size == 0: + model.optimizer.step() - loss.backward() + log_string(f"{label}_loss {n_epoch} model {model.id} {acc_loss/nb_samples}") - if nb_train_samples % args.batch_size == 0: - optimizer.step() - train_perplexity = math.exp(min(100, acc_train_loss / nb_train_samples)) +###################################################################### - log_string(f"train_perplexity {n_epoch} model {model.id} {train_perplexity}") - run_tests(model, quiz_machine, deterministic_synthesis=False) +def save_inference_images(model, n_epoch, c_quizzes, c_quiz_multiplier, local_device): + # Save some images of the prediction results - model.to(main_device) + quizzes = generate_quiz_set(150, c_quizzes, args.c_quiz_multiplier) + imt_set = samples_for_prediction_imt(quizzes.to(local_device)) + result = ae_predict(model, imt_set, local_device=local_device).to("cpu") + masks = imt_set[:, 1].to("cpu") + + correct = (quizzes == result).min(dim=1).values.long() + correct_parts = (2 * correct - 1)[:, None] * masks.reshape(masks.size(0), 4, -1)[ + :, :, 1 + ] + predicted_parts = correct_parts.abs() + + problem.save_quizzes_as_image( + args.result_dir, + f"culture_prediction_{n_epoch}_{model.id}.png", + quizzes=result[:128], + predicted_parts=predicted_parts[:128], + correct_parts=correct_parts[:128], + ) + + # Save some images of the ex nihilo generation of the four grids + + result = ae_generate(model, 150, local_device=local_device).to("cpu") + problem.save_quizzes_as_image( + args.result_dir, + f"culture_generation_{n_epoch}_{model.id}.png", + quizzes=result[:128], + ) ###################################################################### -# This is the key routine that decides what generated quizzes to keep +def one_complete_epoch( + model, n_epoch, train_c_quizzes, test_c_quizzes, local_device=main_device +): + one_epoch(model, n_epoch, train_c_quizzes, train=True, local_device=local_device) + + one_epoch(model, n_epoch, test_c_quizzes, train=False, local_device=local_device) + + # Compute the test accuracy + + quizzes = generate_quiz_set(args.nb_test_samples, c_quizzes, args.c_quiz_multiplier) + imt_set = samples_for_prediction_imt(quizzes.to(local_device)) + result = ae_predict(model, imt_set, local_device=local_device).to("cpu") + correct = (quizzes == result).min(dim=1).values.long() + + nb_correct, nb_total = correct.sum().item(), quizzes.size(0) + model.test_accuracy = nb_correct / nb_total -def compute_valid_quizzes(token_logprobas): - warnings.warn("validation with uniform constraints", RuntimeWarning) - l = token_logprobas.min(dim=-1).values.sort(dim=-1).values - return (l[:, 0] < math.log(0.1)) & (l[:, 1] > math.log(0.5)) + log_string( + f"test_accuracy {n_epoch} model {model.id} nb_correct {nb_correct} / {nb_total} ({model.test_accuracy*100:.02f}%)" + ) + + save_inference_images( + model, n_epoch, c_quizzes, args.c_quiz_multiplier, local_device=local_device + ) + + +###################################################################### -def compute_valid_quizzes_(token_logprobas): - l = token_logprobas.sum(dim=-1).sort(dim=-1).values - return (l[:, 0] < math.log(args.proba_not_understands)) & ( - l[:, 1] > math.log(args.proba_understands) +def max_nb_mistakes_on_one_grid(quizzes, prediction): + return ( + (prediction != quizzes) + .long() + .reshape(quizzes.size(0), 4, -1) + .sum(dim=2) + .max(dim=1) + .values ) -def extract_valid_quizzes_and_logprobas(recorded): - validated_quizzes, validated_logprobas = [], [] - for quizzes, token_logprobas in recorded: - validated_indices = compute_valid_quizzes(token_logprobas) - validated_quizzes.append(quizzes[validated_indices]) - validated_logprobas.append(token_logprobas[validated_indices]) +def evaluate_quizzes(quizzes, models, with_hints, local_device): + nb_correct, nb_wrong = 0, 0 - if len(validated_quizzes) > 0: - return torch.cat(validated_quizzes, dim=0), torch.cat( - validated_logprobas, dim=0 + for model in models: + model = copy.deepcopy(model).to(local_device).eval() + predicted = predict_the_four_grids( + model=model, + input=quizzes, + with_noise=False, + with_hints=with_hints, + local_device=local_device, ) - else: - return None, None + nb_mistakes = max_nb_mistakes_on_one_grid(quizzes, predicted) + nb_correct += (nb_mistakes == 0).long() + nb_wrong += (nb_mistakes >= args.nb_mistakes_to_be_wrong).long() + + # print("\n\n", nb_correct, nb_wrong) + + return nb_correct, nb_wrong ###################################################################### -def create_c_quizzes(models, quiz_machine, nb_for_train=1000, nb_for_test=100): - nb_to_create = nb_for_train + nb_for_test +def identity_quizzes(quizzes): + quizzes = quizzes.reshape(quizzes.size(0), 4, -1) + return (quizzes[:, 0] == quizzes[:, 1]).min(dim=1).values | ( + quizzes[:, 2] == quizzes[:, 3] + ).min(dim=1).values - recorded_quizzes_logprobas = [] +def generate_c_quizzes(models, nb_to_generate, local_device=main_device): + record = [] nb_validated = 0 - while nb_validated < nb_to_create: - model_for_generation = models[torch.randint(len(models), (1,))] + start_time = time.perf_counter() + last_log = -1 - c_quizzes = quiz_machine.generate_quizzes( - nb_to_create, - model_for_generation=model_for_generation, - temperature=args.generation_temperature, + while nb_validated < nb_to_generate: + # Generate new quizzes + + model = models[torch.randint(len(models), (1,)).item()] + model = copy.deepcopy(model).to(local_device).eval() + generator_id = model.id + + c_quizzes = ae_generate( + model=model, nb=args.eval_batch_size * 10, local_device=local_device ) - c_quizzes = c_quizzes[quiz_machine.non_trivial(c_quizzes)] + c_quizzes = c_quizzes[identity_quizzes(c_quizzes) == False] if c_quizzes.size(0) > 0: - token_logproba = quiz_machine.solution_token_logprobas(models, c_quizzes) - recorded_quizzes_logprobas.append((c_quizzes, token_logproba)) + # Select the ones that are solved properly by some models and + # not understood by others + + nb_correct, nb_wrong = evaluate_quizzes( + quizzes=c_quizzes, + models=models, + with_hints=True, + local_device=local_device, + ) + + to_keep = (nb_correct >= args.nb_have_to_be_correct) & ( + nb_wrong >= args.nb_have_to_be_wrong + ) + + nb_validated += to_keep.long().sum().item() + record.append(c_quizzes[to_keep]) + + ##################### + + duration = time.perf_counter() - start_time + + if last_log < 0 or duration > last_log + 10: + last_log = duration + if nb_validated > 0: + if nb_validated < nb_to_generate: + d = (nb_to_generate - nb_validated) * duration / nb_validated + e = ( + datetime.datetime.now() + datetime.timedelta(seconds=d) + ).strftime("%a %H:%M") + else: + e = "now!" + else: + e = "???" + + log_string( + f"nb_validated {nb_validated} model {generator_id} (finishes {e} -- {int((nb_validated * 3600)/duration)}/h)" + ) + + ##################### + + duration = time.perf_counter() - start_time + + log_string(f"generate_c_quizz_speed {int(3600 * nb_validated / duration)}/h") + + return torch.cat(record).to("cpu") + + +###################################################################### - ( - validated_quizzes, - validated_logprobas, - ) = extract_valid_quizzes_and_logprobas(recorded_quizzes_logprobas) - if validated_quizzes is not None: - nb_validated = validated_quizzes.size(0) +def multithread_execution(fun, arguments): + # Single instance, no thread + if len(arguments) == 1: + return fun(*(arguments[0])) - log_string( - f"keep c_quizzes model {model_for_generation.id} nb_accumulated {nb_validated} / {nb_to_create}" + records, threads = [], [] + + def threadable_fun(*args): + r = fun(*args) + if type(r) is not tuple: + r = (r,) + records.append(r) + + for args in arguments: + # To get a different sequence between threads + log_string(f"dummy_rand {torch.rand(1)}") + # torch.rand(1) + t = threading.Thread(target=threadable_fun, daemon=True, args=args) + threads.append(t) + t.start() + + for t in threads: + t.join() + + if records[0] == (None,): + return + else: + return [ + torch.cat([x[k] for x in records], dim=0) for k in range(len(records[0])) + ] + + +###################################################################### + + +def save_models(models, suffix=""): + if suffix != "": + suffix = "_" + suffix + + for model in models: + filename = f"ae_{model.id:03d}{suffix}.pth" + torch.save( + { + "state_dict": model.state_dict(), + "optimizer_state_dict": model.optimizer.state_dict(), + "test_accuracy": model.test_accuracy, + }, + os.path.join(args.result_dir, filename), ) - # store the new c_quizzes which have been validated + log_string(f"wrote ae_*{suffix}.pth") + + +###################################################################### + - quiz_machine.reverse_random_half_in_place(validated_quizzes) - quiz_machine.store_c_quizzes(validated_quizzes[:nb_for_train], for_train=True) - quiz_machine.store_c_quizzes( - validated_quizzes[nb_for_train:nb_to_create], for_train=False +def save_quiz_image(models, c_quizzes, filename, local_device=main_device): + c_quizzes = c_quizzes.to(local_device) + + nb_correct, nb_wrong = evaluate_quizzes( + quizzes=c_quizzes, + models=models, + with_hints=False, + local_device=local_device, + ) + + comments = [f"nb_correct {c} nb_wrong {w}" for c, w in zip(nb_correct, nb_wrong)] + + problem.save_quizzes_as_image( + args.result_dir, + filename, + quizzes=c_quizzes, + comments=comments, + delta=True, + nrow=8, ) - ###################################################################### - # save images with their logprobas + log_string(f"wrote {filename}") - vq = validated_quizzes[:72] - vl = validated_logprobas[:72] - if vq.size(0) > 0: - prefix = f"culture_c_quiz_{n_epoch:04d}" - filename = os.path.join(args.result_dir, prefix + "_logp.pth") - torch.save(vl, filename) - # with open(file_name, "w") as logp_file: - # for l in vl: - # s = " ".join([str(x.item()) for x in l]) - # logp_file.write(s + "\n") +###################################################################### - quiz_machine.save_quiz_illustrations(args.result_dir, prefix, vq) +problem = grids.Grids( + max_nb_cached_chunks=len(gpus) * args.nb_train_samples // 100, + chunk_size=100, + nb_threads=args.nb_threads, + tasks=args.grids_world_tasks, +) +if not args.resume: + problem.save_some_examples(args.result_dir) + + +log_string(f"main_device {main_device} gpus {[ str(g) for g in gpus]}") + +vocabulary_size = problem.vocabulary_size() + +log_string(f"vocabulary_size {vocabulary_size}") ###################################################################### models = [] -for k in range(args.nb_gpts): - log_string(f"creating model {k} and its w_quizzes") - model = mygpt.MyGPT( - vocabulary_size=vocabulary_size, +if args.model_type == "standard": + model_constructor = attae.AttentionAE +elif args.model_type == "functional": + model_constructor = attae.FunctionalAttentionAE +else: + raise ValueError(f"Unknown model type {args.model_type}") + + +for i in range(args.nb_models): + model = model_constructor( + vocabulary_size=vocabulary_size * 2, dim_model=args.dim_model, dim_keys=args.dim_keys, dim_hidden=args.dim_hidden, nb_heads=args.nb_heads, nb_blocks=args.nb_blocks, - causal=True, dropout=args.dropout, - ).to(main_device) + ) - model.main_test_accuracy = 0.0 - model.id = k + # model = torch.compile(model) - model.train_w_quizzes = quiz_machine.generate_token_sequences(args.nb_train_samples) - quiz_machine.reverse_random_half_in_place(model.train_w_quizzes) - model.test_w_quizzes = quiz_machine.generate_token_sequences(args.nb_test_samples) - quiz_machine.reverse_random_half_in_place(model.test_w_quizzes) + model.id = i + model.test_accuracy = 0.0 + model.optimizer = torch.optim.Adam(model.parameters(), lr=args.learning_rate) models.append(model) ###################################################################### -if args.resume: - try: - for model in models: - filename = f"gpt_{model.id:03d}.pth" - - try: - d = torch.load(os.path.join(args.result_dir, filename)) - model.load_state_dict(d[0]) - model.main_test_accuracy = d[1] - log_string(f"successfully loaded {filename}") - except FileNotFoundError: - log_string(f"cannot find {filename}") - pass - - try: - filename = "c_quizzes.pth" - quiz_machine.load_c_quizzes(os.path.join(args.result_dir, filename)) - log_string(f"successfully loaded {filename}") - except FileNotFoundError: - log_string(f"cannot find {filename}") - pass - - except: - log_string(f"error when loading {filename}.") - exit(1) +current_epoch = 0 -###################################################################### - -nb_parameters = sum(p.numel() for p in models[0].parameters()) -log_string(f"nb_parameters {nb_parameters} ({int(nb_parameters/1e6)}M)") +if args.resume: + for model in models: + filename = f"ae_{model.id:03d}.pth" -###################################################################### + d = torch.load( + os.path.join(args.result_dir, filename), + map_location="cpu", + weights_only=False, + ) + model.load_state_dict(d["state_dict"]) + model.optimizer.load_state_dict(d["optimizer_state_dict"]) + model.test_accuracy = d["test_accuracy"] + log_string(f"successfully loaded {filename}") + + filename = "state.pth" + state = torch.load( + os.path.join(args.result_dir, filename), + map_location="cpu", + weights_only=False, + ) -# Compute the entropy of the training tokens + log_string(f"successfully loaded {filename}") -token_count = 0 -for input in quiz_machine.batches(models[0], split="train", desc="train-entropy"): - token_count += F.one_hot(input, num_classes=quiz_machine.vocabulary_size()).sum( - (0, 1) - ) -token_probas = token_count / token_count.sum() -entropy = -torch.xlogy(token_probas, token_probas).sum() -train_set_perplexity = math.exp(entropy) + current_epoch = state["current_epoch"] + train_c_quizzes = state["train_c_quizzes"] + test_c_quizzes = state["test_c_quizzes"] ###################################################################### -# A bit of paranoia never hurts - -if args.max_percents_of_test_in_train >= 0: - - def subsets_as_tuples(batches, cs): - s = set() - for batch in batches: - for x in batch: - s.add(tuple([v.item() for v in x])) - if len(s) == cs: - yield s - s = set() - yield s - - nb_test, nb_in_train = 0, 0 - for test_subset in subsets_as_tuples( - quiz_machine.batches(models[0], split="test", desc="test-check"), 25000 - ): - in_train = set() - for train_subset in subsets_as_tuples( - quiz_machine.batches(models[0], split="train", desc="train-check"), 25000 - ): - in_train.update(test_subset.intersection(train_subset)) - nb_in_train += len(in_train) - nb_test += len(test_subset) - log_string( - f"data_check {nb_in_train*100/nb_test:.02f}% ({nb_in_train}/{nb_test}) of test samples are in the train set" - ) +nb_parameters = sum(p.numel() for p in models[0].parameters()) +log_string(f"nb_parameters {nb_parameters} ({int(nb_parameters/1e6)}M)") - assert ( - nb_in_train <= args.max_percents_of_test_in_train * nb_test / 100 - ), f"More than {args.max_percents_of_test_in_train}% of test samples are in the train set" ###################################################################### -if args.nb_new_c_quizzes_for_train is None: - args.nb_new_c_quizzes_for_train = args.nb_train_samples // 50 - -if args.nb_new_c_quizzes_for_test is None: - args.nb_new_c_quizzes_for_test = args.nb_test_samples // 50 - -log_string( - f"nb_new_c_quizzes_for_train {args.nb_new_c_quizzes_for_train} nb_new_c_quizzes_for_test {args.nb_new_c_quizzes_for_test}" -) +train_c_quizzes, test_c_quizzes = None, None ###################################################################### -if args.dirty_debug: - args.accuracy_to_make_c_quizzes = 0.0 - args.nb_gpts = 2 - args.nb_new_c_quizzes_for_train = 100 - args.nb_new_c_quizzes_for_test = 10 +for n_epoch in range(current_epoch, args.nb_epochs): + start_time = time.perf_counter() + state = { + "current_epoch": n_epoch, + "train_c_quizzes": train_c_quizzes, + "test_c_quizzes": test_c_quizzes, + } -###################################################################### + filename = "state.pth" + torch.save(state, os.path.join(args.result_dir, filename)) + log_string(f"wrote {filename}") -for n_epoch in range(args.nb_epochs): log_string(f"--- epoch {n_epoch} ----------------------------------------") - cta = " ".join([f"{float(m.main_test_accuracy):.04f}" for m in models]) + cta = " ".join([f"{float(m.test_accuracy):.04f}" for m in models]) log_string(f"current_test_accuracies {cta}") - ################################################## - # If all the models are good enough, generate new quizzes and - # re-compute the test errors + # -------------------------------------------------------------------- - if min([m.main_test_accuracy for m in models]) >= args.accuracy_to_make_c_quizzes: - create_c_quizzes( - models, - quiz_machine, - nb_for_train=args.nb_new_c_quizzes_for_train, - nb_for_test=args.nb_new_c_quizzes_for_test, - ) + lowest_test_accuracy = min([float(m.test_accuracy) for m in models]) - filename = "c_quizzes.pth" - quiz_machine.save_c_quizzes(os.path.join(args.result_dir, filename)) - log_string(f"wrote {filename}") + if lowest_test_accuracy >= args.accuracy_to_make_c_quizzes: + if train_c_quizzes is None: + save_models(models, "naive") - ################################################## - # Select, improve, and eval the worst model + nb_gpus = len(gpus) + nb_c_quizzes_to_generate = (args.nb_c_quizzes + nb_gpus - 1) // nb_gpus - ranked_models = sorted(models, key=lambda m: float(m.main_test_accuracy)) + (new_c_quizzes,) = multithread_execution( + generate_c_quizzes, + [(models, nb_c_quizzes_to_generate, gpu) for gpu in gpus], + ) - weakest_models = ranked_models[: len(gpus)] + save_quiz_image( + models, new_c_quizzes[:256], f"culture_c_quiz_{n_epoch:04d}.png" + ) - threads = [] + log_string(f"generated_c_quizzes {new_c_quizzes.size()}") - for gpu, model in zip(gpus, weakest_models): - log_string(f"training model {model.id}") + train_c_quizzes = ( + new_c_quizzes + if train_c_quizzes is None + else torch.cat([train_c_quizzes, new_c_quizzes]) + ) + train_c_quizzes = train_c_quizzes[-args.nb_train_samples :] - t = threading.Thread( - target=one_epoch, daemon=True, args=(model, quiz_machine, gpu) + nb_correct, _ = evaluate_quizzes( + quizzes=train_c_quizzes, + models=models, + with_hints=False, + local_device=local_device, ) - threads.append(t) + test_c_quizzes = train_c_quizzes[nb_correct >= args.nb_have_to_be_correct] - t.start() + for model in models: + model.test_accuracy = 0 - for t in threads: - t.join() + if train_c_quizzes is None: + log_string("no_c_quiz") + else: + log_string(f"nb_c_quizzes {train_c_quizzes.size(0)}") - # Save the models to disk + # -------------------------------------------------------------------- - for model in weakest_models: - filename = f"gpt_{model.id:03d}.pth" - torch.save( - (model.state_dict(), model.main_test_accuracy), - os.path.join(args.result_dir, filename), - ) - log_string(f"wrote {filename}") + ranked_models = sorted(models, key=lambda m: float(m.test_accuracy)) + weakest_models = ranked_models[: len(gpus)] + + log_string( + f"weakest_accuracies {[model.test_accuracy for model in weakest_models]}" + ) - # Renew the training samples + multithread_execution( + one_complete_epoch, + [ + (model, n_epoch, train_c_quizzes, test_c_quizzes, gpu) + for model, gpu in zip(weakest_models, gpus) + ], + ) - for model in weakest_models: - quiz_machine.renew_w_quizzes(model, args.nb_train_samples) + save_models(models) + # -------------------------------------------------------------------- -###################################################################### + duration = time.perf_counter() - start_time + str_duration = "" + if duration >= 60: + str_duration += f"{int(duration)//60}min" + str_duration += f"{int(duration)%60}s" + str_next = ( + datetime.datetime.now() + datetime.timedelta(seconds=duration) + ).strftime("%H:%M:%S") + log_string(f"epoch_duration {str_duration} next_finish {str_next}")