X-Git-Url: https://fleuret.org/cgi-bin/gitweb/gitweb.cgi?a=blobdiff_plain;f=dagnn.lua;h=0f93d95f63a87b320d9e6d261a89c9798b4d9b55;hb=d0743d66135ed7cedcb3777cfa5dda883cbeadb3;hp=1ec9b4ea86f40600f5ff3ac70ed7bfa926841dff;hpb=c8a895aa5f221f0de11733e8d05373e89ae9476e;p=dagnn.git diff --git a/dagnn.lua b/dagnn.lua index 1ec9b4e..0f93d95 100755 --- a/dagnn.lua +++ b/dagnn.lua @@ -1,75 +1,98 @@ -#!/usr/bin/env luajit require 'torch' require 'nn' -require 'image' -require 'optim' ----------------------------------------------------------------------- +local DAG, parent = torch.class('nn.DAG', 'nn.Container') -local Graph, parent = torch.class('nn.Graph', 'nn.Container') - -function Graph:__init() +function DAG:__init() parent.__init(self) - self.pred = {} - self.succ = {} + -- Nodes are indexed by the module they contain + self.node = { } end -function Graph:addEdge(a, b) - local pred, succ = self.pred, self.succ - if not pred[a] and not succ[a] then - self:add(a) - end - if not pred[b] and not succ[b] then - self:add(b) +function DAG:createNode(nnm) + if not self.node[nnm] then + self:add(nnm) -- Add it to the object as a Container + self.node[nnm] = {} + self.node[nnm].succ = {} + self.node[nnm].pred = {} end - pred[b] = pred[b] or {} - pred[b][#pred[b] + 1] = a - succ[a] = succ[a] or {} - succ[a][#succ[a] + 1] = b end -function Graph:setInput(i) - if torch.type(i) == 'table' then - self.inputModules = i - for _, m in ipairs(i) do - if not self.pred[m] and not self.succ[m] then - self:add(m) - end +function DAG:addEdge(nnma, nnmb) + self.sorted = nil + self:createNode(nnma) + self:createNode(nnmb) + table.insert(self.node[nnmb].pred, nnma) + table.insert(self.node[nnma].succ, nnmb) +end + +-- Apply f on t recursively; use the corresponding element from args +-- (i.e. same keys) as second parameter to f when available; return +-- the results from f, organized in a similarly nested table. +function DAG:nestedApply(f, t, args) + if torch.type(t) == 'table' then + local result = {} + for k, s in pairs(t) do + result[k] = self:nestedApply(f, s, args and args[k]) end + return result else - self:setInput({ i }) + return f(t, args) end end -function Graph:setOutput(o) - if torch.type(o) == 'table' then - self.outputModules = o - for _, m in ipairs(o) do - if not self.pred[m] and not self.succ[m] then - self:add(m) +function DAG:setInput(i) + self.sorted = nil + self.inputModules = i + self:nestedApply( + function(nnm) + if #self.node[nnm].succ == 0 then + error('Input modules must have outgoing edges.') end - end - else - self:setOutput({ o }) - end + if #self.node[nnm].pred > 0 then + error('Input modules cannog have incoming edges.') + end + end, + self.inputModules + ) end -function Graph:order() - local distance = {} +function DAG:setOutput(o) + self.sorted = nil + self.outputModules = o + self:nestedApply( + function(nnm) + if #self.node[nnm].pred == 0 then + error('Output module must have incoming edges.') + end + if #self.node[nnm].succ > 0 then + error('Output module cannot have outgoing edges.') + end + end, + self.outputModules + ) +end - for _, a in pairs(self.inputModules) do - distance[a] = 1 +function DAG:putInOrder() + if self.sorted then + return end + -- First, we sort the nodes according to the DAG order + + local distance = {} + + self:nestedApply(function(m) distance[m] = 1 end, self.inputModules) + local nc repeat nc = 0 - for i, isucc in pairs(self.succ) do - for _, j in pairs(isucc) do - if distance[i] and (not distance[j] or distance[j] < distance[i] + 1) then - distance[j] = distance[i] + 1 + for nnma, node in pairs(self.node) do + for _, nnmb in pairs(node.succ) do + if distance[nnma] and (not distance[nnmb] or distance[nnmb] < distance[nnma] + 1) then + distance[nnmb] = distance[nnma] + 1 nc = nc + 1 end end @@ -77,91 +100,140 @@ function Graph:order() until nc == 0 self.sorted = { } - for i, d in pairs(distance) do - table.insert(self.sorted, { d, i }) + for m, d in pairs(distance) do + table.insert(self.sorted, { distance = d, nnm = m }) end - table.sort(self.sorted, function(a, b) return a[1] < b[1] end) - for i, a in ipairs(self.sorted) do self.sorted[i] = a[2] end + table.sort(self.sorted, function(a, b) return a.distance < b.distance end) + + for i, a in ipairs(self.sorted) do self.sorted[i] = a.nnm end end -function Graph:print() +function DAG:print() + self:putInOrder() + for i, d in ipairs(self.sorted) do print('#' .. i .. ' -> ' .. torch.type(d)) end end -function Graph:updateOutput(input) - if #self.inputModules == 1 then - self.inputModules[1]:updateOutput(input) - else - for i, d in ipairs(self.inputModules) do - d:updateOutput(input[i]) - end - end - - for _, d in ipairs(self.sorted) do - if self.pred[d] then - if #self.pred[d] == 1 then - d:updateOutput(self.pred[d][1].output) - elseif #self.pred[d] > 1 then - local c = {} - for k = 1, #self.pred[d] do - c[k] = self.pred[d][k].output +function DAG:updateOutput(input) + self:putInOrder() + + self:nestedApply( + function(nnm, i) + self.node[nnm].input = i + nnm:updateOutput(i) + end, + self.inputModules, + input + ) + + for _, nnm in ipairs(self.sorted) do + local node = self.node[nnm] + if #node.pred > 0 then + local i + if #node.pred == 1 then + i = node.pred[1].output + elseif #node.pred > 1 then + i = {} + for k = 1, #node.pred do + i[k] = node.pred[k].output end - d:updateOutput(c) end + node.input = i + nnm:updateOutput(i) end end - if #self.outputModules == 1 then - self.output = self.outputModules[1].output - else - self.output = { } - for i, d in ipairs(self.outputModules) do - self.output[i] = d.output - end - end + self.output = self:nestedApply( + function(m) return m.output end, + self.outputModules + ) return self.output end ----------------------------------------------------------------------- +function DAG:computeGradInput(gradInputSucc) + local gi + if #gradInputSucc == 1 then + gi = gradInputSucc[1] -- we avoid a clone() + elseif #gradInputSucc > 1 then + for k = 1, #gradInputSucc do + if gi then + gi:add(gradInputSucc[k]) + else + gi = gradInputSucc[k]:clone() + end + end + end + return gi +end + +function DAG:updateGradInput(input, gradOutput) + self:putInOrder() + + self:nestedApply( + function(nnm, go) nnm:updateGradInput(self.node[nnm].input, go) end, + self.outputModules, gradOutput + ) + + self:nestedApply( + function(nnm, i) self.node[nnm].input = i end, + self.inputModules, input + ) -a = nn.Linear(10, 10) -b = nn.ReLU() -c = nn.Linear(10, 3) -d = nn.Linear(10, 3) -e = nn.CMulTable() -f = nn.Linear(3, 2) + for _, node in pairs(self.node) do + node.gradInputSucc = {} + end ---[[ + for k = #self.sorted, 1, -1 do + local nnm = self.sorted[k] + local node = self.node[nnm] + local pred, gradInputSucc = node.pred, node.gradInputSucc - a -----> b ---> c ----> e --- - \ / - \--> d ---/ - \ - \---> f --- -]]-- + if #gradInputSucc > 0 then + nnm:updateGradInput(node.input, self:computeGradInput(gradInputSucc)) + end -g = Graph:new() + -- We fill the gradInputSucc of our predecessors + if #pred == 1 then + table.insert(self.node[pred[1]].gradInputSucc, nnm.gradInput) + elseif #pred > 1 then + if not torch.type(nnm.gradInput) == 'table' then + error('Should have a table gradInput since it has multiple predecessors') + end + for n = 1, #pred do + table.insert(self.node[node.pred[n]].gradInputSucc, nnm.gradInput[n]) + end + end + end -g:setInput(a) -g:setOutput({ e, f }) -g:addEdge(c, e) -g:addEdge(a, b) -g:addEdge(d, e) -g:addEdge(b, c) -g:addEdge(b, d) -g:addEdge(d, f) + self.gradInput = self:nestedApply(function(m) return m.gradInput end, self.inputModules) -g:order() + return self.gradInput +end + +function DAG:accGradParameters(input, gradOutput, scale) + scale = scale or 1 + + self:putInOrder() -g:print(graph) + self:nestedApply( + function(nnm, go) nnm:updateGradInput(self.node[nnm].input, go) end, + self.outputModules, gradOutput + ) -input = torch.Tensor(3, 10):uniform() + self:nestedApply( + function(nnm, i) self.node[nnm].input = i end, + self.inputModules, input + ) -output = g:updateOutput(input) + for k = #self.sorted, 1, -1 do + local nnm = self.sorted[k] + local node = self.node[nnm] + nnm:accGradParameters(node.input, self:computeGradInput(node.gradInputSucc), scale) + end +end -print(output[1]) -print(output[2]) +return DAG