X-Git-Url: https://fleuret.org/cgi-bin/gitweb/gitweb.cgi?a=blobdiff_plain;f=README.md;h=f370b71e9ec62c0f2af82de24b78de461a375cc1;hb=d3b0a00b9f46d4ef147e8d52b9d02ebdf78ce9d3;hp=3b8d274294ac1316b5fbbb38e9228703cce89917;hpb=34eff36879f9b2fa3ec1130fccb723c5b907a586;p=dagnn.git diff --git a/README.md b/README.md index 3b8d274..f370b71 100644 --- a/README.md +++ b/README.md @@ -1,9 +1,13 @@ -This package implements a new module nn.DAG which inherits from nn.Container and allows to combine modules in an arbitrary graph without cycle. +#Introduction# -#Example# +This package implements a new module nn.DAG which inherits from +nn.Container and allows to combine modules in an arbitrary graph +without cycle. -The typical use is: +##Example## + +A typical use would be: ```Lua model = nn.DAG() @@ -11,41 +15,106 @@ model = nn.DAG() a = nn.Linear(100, 10) b = nn.ReLU() c = nn.Linear(10, 15) -d = nn.Linear(10, 15) -e = nn.CMulTable() -f = nn.Linear(15, 15) +d = nn.CMulTable() +e = nn.Linear(15, 15) -model:addEdge(a, b) -model:addEdge(b, c) -model:addEdge(b, d) -model:addEdge(c, e) -model:addEdge(d, e) -model:addEdge(d, f) +model:connect(a, b) +model:connect(b, nn.Linear(10, 15), nn.ReLU(), d) +model:connect(b, c) +model:connect(c, d) +model:connect(c, nn.Mul(-1), e) model:setInput(a) -model:setOutput({ e, f }) +model:setOutput({ d, e }) -input = torch.Tensor(300, 100):uniform() -output = model:updateOutput(input):clone() +input = torch.Tensor(30, 100):uniform() +output = model:updateOutput(input) ``` which would encode the following graph - +--> c ----> e --> - / / - / / - input --> a --> b ----> d ---+ output - \ + +- Linear(10, 10) -> ReLU ---> d --> + / / + / / + --> a --> b -----------> c --------------+ \ - +--> f --> + \ + +-- Mul(-1) --> e --> + +and run a forward pass with a random batch of 30 samples. + +Note that DAG:connect allows to add a bunch of edges at once. This is +particularly useful to add anonymous modules which have a single +predecessor and successor. + +##Input and output## + +If a node has a single predecessor, its output is taken as-is. If it +has multiple predecessors, all the outputs are collected into a table, +and the table is used as input. The indexes of the outputs in that +table reflects the order in which the predecessors appeared in the +DAG:connect() commands. + +The input to the DAG (respectively the produced output) is a nested +table of inputs reflecting the structure of the nested table of +modules provided to DAG:setInput (respectively DAG:setOutput) + +So for instance, in the example above, the model expects a tensor as +input, since it is the input to the module a, and its output will is a +table composed of two tensors, corresponding to the outputs of d and e +respectively. + +#Usage# + +##nn.DAG()## + +Create a new empty DAG, which inherits from nn.Container. + +##nn.DAG:connect([module1 [, module2 [, ...]]])## + +Add new nodes corresponding to the modules passed as arguments if they +are not already existing. Add edges between every two nodes +corresponding to a pair of successive modules in the arguments. + +Calling it with n > 2 arguments is strictly equivalent to calling it +n-1 times on the pairs of successive arguments. + +##nn.DAG:setInput(i)## + +Defines the content and structure of the input. The argument should be +either a module, or a (nested) table of module. The input to the DAG +should be a (nested) table of inputs with the corresponding structure. + +##nn.DAG:setOutput(o)## + +Similar to DAG:setInput(). + +##nn.DAG:print()## + +Prints the list of nodes. + +##nn.DAG:saveDot(filename)## + +Save a dot file to be used by the Graphviz set of tools for graph +visualization. This dot file can than be used for instance to produce +a pdf file with + +``` +dot graph.dot -T pdf -o graph.pdf +``` + +##nn.DAG:updateOutput(input)## + +See the torch documentation. -#Input and output# +##nn.DAG:updateGradInput(input, gradOutput)## -If a node has a single successor, its output is sent unchanged as input to that successor. If it has multiple successors, the outputs are collected into a table, and the table is used as input to the successor node. The indexes of the outputs in that table reflects the order in which they appear in the addEdge commands. +See the torch documentation. -The expected input (respectively the produced output) is a nested table of inputs reflecting the structure of the nested table of modules provided to DAG:setInput (respectively DAG:setOutput) +##nn.DAG:accGradParameters(input, gradOutput, scale)## -So for instance, in the example above, the DAG expects a tensor as input, since it is the input to the module a, and its output will is a table composed of two tensors, corresponding to the outputs of e and f respectively. +See the torch documentation. -*Francois Fleuret, Jan 12th, 2017* +-- +*Francois Fleuret, Jan 13th, 2017*