X-Git-Url: https://fleuret.org/cgi-bin/gitweb/gitweb.cgi?a=blobdiff_plain;ds=sidebyside;f=reasoning.py;h=2874adc9c1c3f213bafce0c8dac53063c6463ab9;hb=f3ea2cbe833ff672ca5c41b98d583883ca233023;hp=57e80566640c86aa7fe3b65736d24a260753d43b;hpb=02efe3bb50a512bc9ddd04f0c55fcf1ec11ba95f;p=culture.git diff --git a/reasoning.py b/reasoning.py index 57e8056..2874adc 100755 --- a/reasoning.py +++ b/reasoning.py @@ -27,9 +27,9 @@ class Reasoning(problem.Problem): ("cyan", [0, 255, 255]), ("violet", [255, 0, 255]), ("lightgreen", [192, 255, 192]), - ("pink", [255, 192, 192]), + ("brown", [165, 42, 42]), ("lightblue", [192, 192, 255]), - ("gray", [192, 192, 192]), + ("gray", [128, 128, 128]), ] def __init__(self, device=torch.device("cpu")): @@ -42,6 +42,31 @@ class Reasoning(problem.Problem): ###################################################################### def frame2img(self, x, scale=15): + x = x.reshape(x.size(0), self.height, -1) + m = torch.logical_and(x >= 0, x < self.nb_token_values()).long() + x = self.colors[x * m].permute(0, 3, 1, 2) + s = x.shape + x = x[:, :, :, None, :, None].expand(-1, -1, -1, scale, -1, scale) + x = x.reshape(s[0], s[1], s[2] * scale, s[3] * scale) + + x[:, :, :, torch.arange(0, x.size(3), scale)] = 0 + x[:, :, torch.arange(0, x.size(2), scale), :] = 0 + x = x[:, :, 1:, 1:] + + for n in range(m.size(0)): + for i in range(m.size(1)): + for j in range(m.size(2)): + if m[n, i, j] == 0: + for k in range(2, scale - 2): + for l in [0, 1]: + x[n, :, i * scale + k, j * scale + k - l] = 0 + x[ + n, :, i * scale + scale - 1 - k, j * scale + k - l + ] = 0 + + return x + + def frame2img_(self, x, scale=15): x = x.reshape(x.size(0), self.height, -1) x = self.colors[x].permute(0, 3, 1, 2) s = x.shape @@ -173,14 +198,13 @@ class Reasoning(problem.Problem): # non-overlapping rectangles quickly, but made the generation of # 100k samples go from 1h50 with a lame pure python code to 3min30s # with this one. - def rec_coo(self, x, n, min_height=3, min_width=3): - K = 3 - N = 200 + def rec_coo(self, nb_rec, min_height=3, min_width=3): + nb_trials = 200 while True: v = ( ( - torch.rand(N * K, self.height + 1, device=self.device) + torch.rand(nb_trials * nb_rec, self.height + 1, device=self.device) .sort(dim=-1) .indices < 2 @@ -192,7 +216,7 @@ class Reasoning(problem.Problem): h = ( ( - torch.rand(N * K, self.width + 1, device=self.device) + torch.rand(nb_trials * nb_rec, self.width + 1, device=self.device) .sort(dim=-1) .indices < 2 @@ -207,10 +231,10 @@ class Reasoning(problem.Problem): ) v, h = v[i], h[i] - v = v[: v.size(0) - v.size(0) % K] - h = h[: h.size(0) - h.size(0) % K] - v = v.reshape(v.size(0) // K, K, -1) - h = h.reshape(h.size(0) // K, K, -1) + v = v[: v.size(0) - v.size(0) % nb_rec] + h = h[: h.size(0) - h.size(0) % nb_rec] + v = v.reshape(v.size(0) // nb_rec, nb_rec, -1) + h = h.reshape(h.size(0) // nb_rec, nb_rec, -1) r = v[:, :, :, None] * h[:, :, None, :] @@ -260,23 +284,23 @@ class Reasoning(problem.Problem): ###################################################################### def task_replace_color(self, A, f_A, B, f_B): - N = 3 - c = torch.randperm(len(self.colors) - 1)[: N + 1] + 1 + nb_rec = 3 + c = torch.randperm(len(self.colors) - 1)[: nb_rec + 1] + 1 for X, f_X in [(A, f_A), (B, f_B)]: - r = self.rec_coo(X, N) - for n in range(N): + r = self.rec_coo(nb_rec) + for n in range(nb_rec): i1, j1, i2, j2 = r[n] X[i1:i2, j1:j2] = c[n] f_X[i1:i2, j1:j2] = c[n if n > 0 else -1] def task_move(self, A, f_A, B, f_B): - di, dj = torch.randint(2, (2,)) * 2 - 1 - N = 3 - c = torch.randperm(len(self.colors) - 1)[:N] + 1 + di, dj = torch.randint(3, (2,)) - 1 + nb_rec = 3 + c = torch.randperm(len(self.colors) - 1)[:nb_rec] + 1 for X, f_X in [(A, f_A), (B, f_B)]: while True: - r = self.rec_coo(X, N) - i1, j1, i2, j2 = r[N - 1] + r = self.rec_coo(nb_rec) + i1, j1, i2, j2 = r[nb_rec - 1] if ( i1 + di >= 0 and i2 + di < X.size(0) @@ -285,29 +309,29 @@ class Reasoning(problem.Problem): ): break - for n in range(N): + for n in range(nb_rec): i1, j1, i2, j2 = r[n] X[i1:i2, j1:j2] = c[n] - if n == N - 1: + if n == nb_rec - 1: f_X[i1 + di : i2 + di, j1 + dj : j2 + dj] = c[n] else: f_X[i1:i2, j1:j2] = c[n] def task_grow(self, A, f_A, B, f_B): di, dj = torch.randint(2, (2,)) * 2 - 1 - N = 3 - c = torch.randperm(len(self.colors) - 1)[:N] + 1 + nb_rec = 3 + c = torch.randperm(len(self.colors) - 1)[:nb_rec] + 1 direction = torch.randint(2, (1,)) for X, f_X in [(A, f_A), (B, f_B)]: while True: - r = self.rec_coo(X, N) - i1, j1, i2, j2 = r[N - 1] + r = self.rec_coo(nb_rec) + i1, j1, i2, j2 = r[nb_rec - 1] if i1 + 3 < i2 and j1 + 3 < j2: break - for n in range(N): + for n in range(nb_rec): i1, j1, i2, j2 = r[n] - if n == N - 1: + if n == nb_rec - 1: if direction == 0: X[i1 + 1 : i2 - 1, j1 + 1 : j2 - 1] = c[n] f_X[i1:i2, j1:j2] = c[n] @@ -320,12 +344,12 @@ class Reasoning(problem.Problem): def task_color_grow(self, A, f_A, B, f_B): di, dj = torch.randint(2, (2,)) * 2 - 1 - N = 3 - c = torch.randperm(len(self.colors) - 1)[: 2 * N] + 1 + nb_rec = 3 + c = torch.randperm(len(self.colors) - 1)[: 2 * nb_rec] + 1 direction = torch.randint(4, (1,)) for X, f_X in [(A, f_A), (B, f_B)]: - r = self.rec_coo(X, N) - for n in range(N): + r = self.rec_coo(nb_rec) + for n in range(nb_rec): i1, j1, i2, j2 = r[n] X[i1:i2, j1:j2] = c[2 * n] f_X[i1:i2, j1:j2] = c[2 * n] @@ -333,53 +357,54 @@ class Reasoning(problem.Problem): if direction == 0: i = (i1 + i2) // 2 X[i : i + 1, j1:j2] = c[2 * n + 1] - if n == N - 1: + if n == nb_rec - 1: f_X[i:i2, j1:j2] = c[2 * n + 1] else: f_X[i : i + 1, j1:j2] = c[2 * n + 1] elif direction == 1: i = (i1 + i2 - 1) // 2 X[i : i + 1, j1:j2] = c[2 * n + 1] - if n == N - 1: + if n == nb_rec - 1: f_X[i1 : i + 1, j1:j2] = c[2 * n + 1] else: f_X[i : i + 1, j1:j2] = c[2 * n + 1] elif direction == 2: j = (j1 + j2) // 2 X[i1:i2, j : j + 1] = c[2 * n + 1] - if n == N - 1: + if n == nb_rec - 1: f_X[i1:i2, j:j2] = c[2 * n + 1] else: f_X[i1:i2, j : j + 1] = c[2 * n + 1] elif direction == 3: j = (j1 + j2 - 1) // 2 X[i1:i2, j : j + 1] = c[2 * n + 1] - if n == N - 1: + if n == nb_rec - 1: f_X[i1:i2, j1 : j + 1] = c[2 * n + 1] else: f_X[i1:i2, j : j + 1] = c[2 * n + 1] def task_frame(self, A, f_A, B, f_B): - N = 3 - c = torch.randperm(len(self.colors) - 1)[: N + 1] + 1 + nb_rec = 3 + c = torch.randperm(len(self.colors) - 1)[: nb_rec + 1] + 1 for X, f_X in [(A, f_A), (B, f_B)]: - r = self.rec_coo(X, N) - for n in range(N): + r = self.rec_coo(nb_rec) + for n in range(nb_rec): i1, j1, i2, j2 = r[n] X[i1:i2, j1:j2] = c[n] f_X[i1:i2, j1:j2] = c[n] - if n == N - 1: + if n == nb_rec - 1: f_X[i1 + 1 : i2 - 1, j1 + 1 : j2 - 1] = 0 def task_detect(self, A, f_A, B, f_B): - N = 3 - c = torch.randperm(len(self.colors) - 1)[: N + 1] + 1 + nb_rec = 3 + c = torch.randperm(len(self.colors) - 1)[: nb_rec + 1] + 1 for X, f_X in [(A, f_A), (B, f_B)]: - r = self.rec_coo(X, N) - for n in range(N): + r = self.rec_coo(nb_rec) + for n in range(nb_rec): i1, j1, i2, j2 = r[n] X[i1:i2, j1:j2] = c[n] - f_X[i1, j1] = c[-1] + if n < nb_rec - 1: + f_X[i1, j1] = c[-1] ###################################################################### @@ -442,14 +467,15 @@ if __name__ == "__main__": delay = time.perf_counter() - start_time print(f"{prompts.size(0)/delay:02f} seq/s") - # predicted_prompts = torch.rand(prompts.size(0)) < 0.5 - # predicted_answers = torch.logical_not(predicted_prompts) + predicted_prompts = torch.rand(prompts.size(0)) < 0.5 + predicted_answers = torch.logical_not(predicted_prompts) reasoning.save_quizzes( "/tmp", "test", - prompts[:36], - answers[:36], + prompts[:64], + answers[:64], # You can add a bool to put a frame around the predicted parts - # predicted_prompts, predicted_answers + predicted_prompts[:64], + predicted_answers[:64], )