X-Git-Url: https://fleuret.org/cgi-bin/gitweb/gitweb.cgi?a=blobdiff_plain;ds=sidebyside;f=mygpt.py;h=676b92181bd4bcc8eb5e2d22e58cdfa672e8e947;hb=ffe183868ac8563fd82fc8312fda90f6f8a95833;hp=17f2f6d721a6c3848df0e65908589947eb6f3fd9;hpb=de0831357e74b1d1a61b1a41890e20ed1a2c9b96;p=mygptrnn.git diff --git a/mygpt.py b/mygpt.py index 17f2f6d..676b921 100755 --- a/mygpt.py +++ b/mygpt.py @@ -483,7 +483,6 @@ class Caterpillar(nn.Module): self.caterpillar_height = caterpillar_height self.attention_dropout = attention_dropout - self.proba_flashback = 0.0 self.proba_gate_dropout = 0.0 self.w_G = randw(nb_heads, caterpillar_height, dim_model) @@ -540,6 +539,9 @@ class Caterpillar(nn.Module): self.cache_Y = X.new_zeros(N, T, DM) + V = torch.einsum("ntc,hdc->nhtd", X, self.w_V) + K = torch.einsum("ntc,hdc->nhtd", X, self.w_K) + ###################################################################### # Compute the recurrent state @@ -558,24 +560,26 @@ class Caterpillar(nn.Module): G = G / G.sum(1, keepdim=True).clamp(min=1) - if self.training and self.proba_gate_dropout > 0.0: - warnings.warn("gate dropout", RuntimeWarning) - epsilon = 0.5 - - V = torch.einsum("ntc,hdc->nhtd", X, self.w_V) - K = torch.einsum("ntc,hdc->nhtd", X, self.w_K) - # We prepare the arguments for the parallel scan A = 1 - G.sum(1) gated_V = torch.einsum("nhet,nhtd->netd", G, V) gated_K = torch.einsum("nhet,nhtd->netd", G, K) - # Initial recurrent state + # We start from cached values, which matters in inference init_rec_V = self.rec_V[:, :, t0 - CL : t0] init_rec_K = self.rec_K[:, :, t0 - CL : t0] + ###################################################################### + + if self.training and self.proba_gate_dropout > 0.0: + # This is a better implementation of "flashbacks". A is + # NxExT where e is the caterpillar's row. + + warnings.warn("gate dropout", RuntimeWarning) + epsilon = 0.5 + ################################################################# # Associative scan @@ -595,42 +599,6 @@ class Caterpillar(nn.Module): self.rec_V[:, :, t0:t1] = next_V.flatten(2, 3) self.rec_K[:, :, t0:t1] = next_K.flatten(2, 3) - ################################################################# - - if self.training and self.proba_flashback > 0.0: - warnings.warn("flash back", RuntimeWarning) - # This piece of code makes the assumption that there is - # nothing informative before t0, otherwise we'd have to - # implement a cache for V and K too. This should not be - # too much of a problem since this is used only during - # train, where full sequence are available - - n = torch.arange(N, device=X.device)[:, None, None, None] - t = torch.arange(t0, t1, device=X.device)[None, None, :, None] - dv = torch.arange(DV, device=X.device)[None, None, None, :] - dk = torch.arange(DK, device=X.device)[None, None, None, :] - - u = ( - torch.rand(N, CH, t1 - t0, 1, device=X.device).mul(t).long() // CL - ) * CL - - src_time = t - u - t0 - src_head = torch.randint(H, (N, CH, t1 - t0, 1), device=X.device) - - mask = ( - torch.rand(N, CH, t1 - t0, DV, device=X.device) <= self.proba_flashback - ).long() - - self.rec_V[:, :, t0:t1] = ( - mask * V[n, src_head, src_time, dv] - + (1 - mask) * self.rec_V[:, :, t0:t1] - ) - - self.rec_K[:, :, t0:t1] = ( - mask * K[n, src_head, src_time, dk] - + (1 - mask) * self.rec_K[:, :, t0:t1] - ) - ###################################################################### # compute the readout