X-Git-Url: https://fleuret.org/cgi-bin/gitweb/gitweb.cgi?a=blobdiff_plain;ds=sidebyside;f=mtp.cc;h=7f55e0a8a060cafb96d0e961dbeb1ec7dd5e5fc0;hb=4d9b58034ce82094c233b61da247e11a584ec0bd;hp=cd1290c767d480713c0e701630837a537807fc91;hpb=ae55303c805d340b8c4a3d080ecdadb41c84a9ec;p=mtp.git diff --git a/mtp.cc b/mtp.cc index cd1290c..7f55e0a 100644 --- a/mtp.cc +++ b/mtp.cc @@ -27,21 +27,29 @@ using namespace std; ////////////////////////////////////////////////////////////////////// -scalar_t detection_score(int true_label, scalar_t flip_noise) { - if((true_label > 0) == (drand48() < flip_noise)) { - return 1.0 + 0.2 * (drand48() - 0.5); +scalar_t detection_score(scalar_t a, scalar_t b, scalar_t score_noise, scalar_t flip_noise) { + if(drand48() > flip_noise) { + return a + score_noise * (2.0 * drand48() - 1.0); } else { - return - 1.0 + 0.2 * (drand48() - 0.5); + return b + score_noise * (2.0 * drand48() - 1.0); } } int main(int argc, char **argv) { - int nb_locations = 6; - int nb_time_steps = 5; + int nb_locations = 7; + int nb_time_steps = 8; int motion_amplitude = 1; Tracker *tracker = new Tracker(nb_time_steps, nb_locations); + // We define the spatial structures by stating what are the possible + // motions of targets, and what are the entrances and the + // exits. + + // Here our example is a 1D space with motions from any location to + // any location less than motion_amplitude away, entrance at + // location 0 and exit at location nb_locations-1. + for(int l = 0; l < nb_locations; l++) { for(int k = 0; k < nb_locations; k++) { tracker->allowed_motion[l][k] = abs(l - k) <= motion_amplitude; @@ -50,42 +58,63 @@ int main(int argc, char **argv) { tracker->exits[nb_locations - 1] = 1; } + // We construct the graph corresponding to this structure + tracker->build_graph(); - // We generate synthetic detection scores at location - // nb_locations/2, with 5% false detection (FP or FN) + // Then, we specify for every location and time step what is the + // detection score there. + + scalar_t flip_noise = 0.05; + scalar_t score_noise = 0.0; + + // We first put a background noise, with negative scores at every + // location. for(int t = 0; t < nb_time_steps; t++) { for(int l = 0; l < nb_locations; l++) { - tracker->detection_score[t][l] = detection_score(-1, 0.95); + tracker->detection_scores[t][l] = detection_score(-1.0, 1.0, score_noise, flip_noise); } } + // Then we two targets with the typical local minimum: + // + // * Target A moves from location 0 to the middle, stays there for a + // while, and comes back, and is strongly detected on the first + // half + // + // * Target B moves from location nb_locations-1 to the middle, stay + // there for a while, and comes back, and is strongly detected on + // the second half + + int la, lb; // Target locations + scalar_t sa, sb; // Target detection scores for(int t = 0; t < nb_time_steps; t++) { - tracker->detection_score[t][nb_locations/2] = detection_score(1, 0.95); + if(t < nb_time_steps/2) { + la = t; + lb = nb_locations - 1 - t; + sa = detection_score(10.0, -1.0, score_noise, flip_noise); + sb = detection_score( 1.0, -1.0, score_noise, flip_noise); + } else { + la = nb_time_steps - 1 - t; + lb = t - nb_time_steps + nb_locations; + sa = detection_score( 1.0, -1.0, score_noise, flip_noise); + sb = detection_score(10.0, -1.0, score_noise, flip_noise); + } + + if(la > nb_locations/2 - 1) la = nb_locations/2 - 1; + if(lb < nb_locations/2 + 1) lb = nb_locations/2 + 1; + + tracker->detection_scores[t][la] = sa; + tracker->detection_scores[t][lb] = sb; } - // Puts two target with the typical local minimum (i.e. the optimal - // single path would track the first target on the first half and - // the second on the second half, while the optimal two paths would - // each follow one of the target properly) - - // for(int t = 0; t < nb_time_steps; t++) { - // int a = nb_time_steps/2 - abs(t - nb_time_steps/2); - // int b = nb_locations - 1 - a; - // if(a > nb_locations/2 - 1) a = nb_locations/2 - 1; - // if(b < nb_locations/2 + 1) b = nb_locations/2 + 1; - // if(t < nb_time_steps/2) { - // tracker->detection_score[t][a] = 10.0; - // tracker->detection_score[t][b] = 1.0; - // } else { - // tracker->detection_score[t][a] = 1.0; - // tracker->detection_score[t][b] = 10.0; - // } - // } + // Does the tracking per se tracker->track(); + // Prints the detected trajectories + for(int t = 0; t < tracker->nb_trajectories(); t++) { cout << "TRAJECTORY " << t @@ -97,6 +126,9 @@ int main(int argc, char **argv) { cout << endl; } + // Save the underlying graph in the dot format, with occupied edges + // marked in bold. + { ofstream dot("graph.dot"); tracker->print_graph_dot(&dot);