X-Git-Url: https://fleuret.org/cgi-bin/gitweb/gitweb.cgi?a=blobdiff_plain;ds=sidebyside;f=main.py;h=6b00bbfd991178841468b75006f94121668c2b4f;hb=refs%2Fheads%2Fmaster;hp=ebecad8a471353400fc7e6e472bdb95f594b48ab;hpb=15192743a5dee8d88650319d64610f1603d21472;p=culture.git diff --git a/main.py b/main.py index ebecad8..5dceefc 100755 --- a/main.py +++ b/main.py @@ -5,63 +5,67 @@ # Written by Francois Fleuret -import math, sys, argparse, time, tqdm, os, datetime, warnings +import math, sys, argparse, time, tqdm, os, datetime, warnings, copy import torch, torchvision from torch import nn from torch.nn import functional as F -import ffutils -import mygpt, tasks +import ffutils, grids, attae -# world quizzes vs. culture quizzes +import threading, subprocess -###################################################################### +# import torch.multiprocessing as mp -accuracy_to_make_c_quizzes = 0.975 -nb_new_c_quizzes_for_train = 1000 -nb_new_c_quizzes_for_test = 100 +torch.set_float32_matmul_precision("high") -###################################################################### - -if torch.cuda.is_available(): - device = torch.device("cuda") - torch.backends.cuda.matmul.allow_tf32 = True -else: - device = torch.device("cpu") +# torch.set_default_dtype(torch.bfloat16) ###################################################################### parser = argparse.ArgumentParser( - description="An implementation of GPT with cache.", formatter_class=argparse.ArgumentDefaultsHelpFormatter, ) -parser.add_argument("--log_filename", type=str, default="train.log", help=" ") +parser.add_argument("--log_filename", type=str, default="train.log") parser.add_argument("--result_dir", type=str, default=None) parser.add_argument("--seed", type=int, default=0) -parser.add_argument("--max_percents_of_test_in_train", type=int, default=1) +parser.add_argument("--resume", action="store_true", default=False) -######################################## +# ---------------------------------- parser.add_argument("--nb_epochs", type=int, default=10000) -parser.add_argument("--batch_size", type=int, default=None) +parser.add_argument("--batch_size", type=int, default=25) + +parser.add_argument("--train_batch_size", type=int, default=None) + +parser.add_argument("--eval_batch_size", type=int, default=25) -parser.add_argument("--physical_batch_size", type=int, default=None) +parser.add_argument("--nb_train_samples", type=int, default=50000) -parser.add_argument("--nb_train_samples", type=int, default=None) +parser.add_argument("--nb_test_samples", type=int, default=2500) -parser.add_argument("--nb_test_samples", type=int, default=None) +parser.add_argument("--nb_c_quizzes", type=int, default=5000) -parser.add_argument("--learning_rate", type=float, default=1e-4) +parser.add_argument("--c_quiz_multiplier", type=int, default=1) -######################################## +parser.add_argument("--learning_rate", type=float, default=5e-4) -parser.add_argument("--model", type=str, default=None) +parser.add_argument("--nb_have_to_be_correct", type=int, default=3) + +parser.add_argument("--nb_have_to_be_wrong", type=int, default=1) + +parser.add_argument("--nb_mistakes_to_be_wrong", type=int, default=5) + +# ---------------------------------- + +parser.add_argument("--model_type", type=str, default="standard") + +parser.add_argument("--model", type=str, default="37M") parser.add_argument("--dim_model", type=int, default=None) @@ -73,42 +77,49 @@ parser.add_argument("--nb_heads", type=int, default=None) parser.add_argument("--nb_blocks", type=int, default=None) -parser.add_argument("--dropout", type=float, default=0.1) +parser.add_argument("--dropout", type=float, default=0.5) -######################################## +# ---------------------------------- -parser.add_argument("--deterministic_synthesis", action="store_true", default=False) +parser.add_argument("--nb_threads", type=int, default=1) -parser.add_argument("--nb_gpts", type=int, default=5) +parser.add_argument("--gpus", type=str, default="all") -parser.add_argument("--dirty_debug", action="store_true", default=False) +# ---------------------------------- -###################################################################### +parser.add_argument("--nb_models", type=int, default=5) -args = parser.parse_args() +parser.add_argument("--diffusion_nb_iterations", type=int, default=25) -if args.result_dir is None: - args.result_dir = f"results_culture" +parser.add_argument("--diffusion_proba_corruption", type=float, default=0.05) + +parser.add_argument("--accuracy_to_make_c_quizzes", type=float, default=0.95) + +parser.add_argument("--proba_prompt_noise", type=float, default=0.05) + +parser.add_argument("--proba_hint", type=float, default=0.25) + +parser.add_argument("--quizzes", type=str, default=None) ###################################################################### -if args.dirty_debug: - accuracy_to_make_c_quizzes = 0.0 - nb_new_c_quizzes_for_train = 100 - nb_new_c_quizzes_for_test = 10 +grids_tasks = ", ".join( + [x.__name__.removeprefix("task_") for x in grids.Grids().all_tasks] +) + +parser.add_argument( + "--grids_world_tasks", + type=str, + default="replace_color,translate,grow,frame", + help="A comma-separated subset of: " + grids_tasks + ".", +) ###################################################################### -default_args = { - "model": "37M", - "batch_size": 100, - "nb_train_samples": 250000, - "nb_test_samples": 10000, -} +args = parser.parse_args() -for k, v in default_args.items(): - if getattr(args, k) is None: - setattr(args, k, v) +if args.result_dir is None: + args.result_dir = f"results_culture" ###################################################################### @@ -159,11 +170,16 @@ else: ###################################################################### -try: - os.mkdir(args.result_dir) -except FileExistsError: - print(f"result directory {args.result_dir} already exists") - exit(1) +if args.resume: + if not os.path.isdir(args.result_dir): + print(f"Trying to resume from a non-existing result dir {args.result_dir}.") + exit(1) +else: + try: + os.mkdir(args.result_dir) + except FileExistsError: + print(f"result directory {args.result_dir} already exists") + exit(1) log_file = open(os.path.join(args.result_dir, args.log_filename), "a") @@ -179,6 +195,9 @@ if args.seed >= 0: def log_string(s): + """print the given string prefixed with a time stamps, and log it + into log_file is not None""" + t = time.strftime("%Y%m%d-%H:%M:%S ", time.localtime()) if log_file is not None: @@ -189,6 +208,18 @@ def log_string(s): sys.stdout.flush() +###################################################################### +# Create a time-stamped archive of the source code + +with open("this_run.sh", "w") as f: + f.write(f"{' '.join(sys.argv)}\n") + +now = time.strftime("%Y%m%d-%H%M%S", time.localtime()) + +os.system(f"tar zcvf {args.result_dir}/src-{now}.tgz *.py *.sh") + +###################################################################### + log_string(f"argv {' '.join(sys.argv)}") for n in vars(args): @@ -197,291 +228,773 @@ for n in vars(args): ###################################################################### -if args.dirty_debug: - args.nb_train_samples = 2500 - args.nb_test_samples = 100 +if args.gpus == "all": + gpus_idx = range(torch.cuda.device_count()) +else: + gpus_idx = [int(k) for k in args.gpus.split(",")] + +gpus = [torch.device(f"cuda:{n}") for n in gpus_idx] + +if torch.cuda.is_available(): + main_device = gpus[0] +else: + assert len(gpus) == 0 + main_device = torch.device("cpu") -if args.physical_batch_size is None: - args.physical_batch_size = args.batch_size +if args.train_batch_size is None: + args.train_batch_size = args.batch_size else: - assert args.batch_size % args.physical_batch_size == 0 + assert args.batch_size % args.train_batch_size == 0 assert args.nb_train_samples % args.batch_size == 0 assert args.nb_test_samples % args.batch_size == 0 -task = tasks.World( - nb_train_samples=args.nb_train_samples, - nb_test_samples=args.nb_test_samples, - batch_size=args.physical_batch_size, - result_dir=args.result_dir, - logger=log_string, - device=device, -) +###################################################################### + + +def optimizer_to(optim, device): + """Move the optimizer optim to the device""" + for param in optim.state.values(): + # Not sure there are any global tensors in the state dict + if isinstance(param, torch.Tensor): + param.data = param.data.to(device) + if param._grad is not None: + param._grad.data = param._grad.data.to(device) + elif isinstance(param, dict): + for subparam in param.values(): + if isinstance(subparam, torch.Tensor): + subparam.data = subparam.data.to(device) + if subparam._grad is not None: + subparam._grad.data = subparam._grad.data.to(device) + ###################################################################### -log_string(f"device {device}") -vocabulary_size = task.vocabulary_size() +def generate_quiz_set(nb_samples, c_quizzes, c_quiz_multiplier=1): + if c_quizzes is None: + quizzes = problem.generate_w_quizzes(nb_samples) + nb_w_quizzes = quizzes.size(0) + nb_c_quizzes = 0 + else: + if c_quiz_multiplier > 1: + n = min(c_quiz_multiplier, (nb_samples // 2) // c_quizzes.size(0)) + body = c_quizzes.repeat(n, 1) + if n < c_quiz_multiplier: + tail = c_quizzes[ + torch.randperm(c_quizzes.size(0))[: nb_samples // 2 - body.size(0)] + ] + c_quizzes = torch.cat([body, tail], dim=0) + else: + c_quizzes = body + + if c_quizzes.size(0) > nb_samples // 2: + i = torch.randperm(c_quizzes.size(0))[: nb_samples // 2] + c_quizzes = c_quizzes[i] + + w_quizzes = problem.generate_w_quizzes(nb_samples - c_quizzes.size(0)) + + quizzes = torch.cat([w_quizzes, c_quizzes], dim=0) + nb_w_quizzes = w_quizzes.size(0) + nb_c_quizzes = c_quizzes.size(0) + + i = torch.randperm(quizzes.size(0), device=quizzes.device) + quizzes = quizzes[i].contiguous() + + log_string(f"quiz_set nb_w_quizzes {nb_w_quizzes} nb_c_quizzes {nb_c_quizzes}") + + return quizzes -log_string(f"vocabulary_size {vocabulary_size}") ###################################################################### -# Compute the entropy of the training tokens -token_count = 0 -for input in task.batches(split="train", desc="train-entropy"): - token_count += F.one_hot(input, num_classes=task.vocabulary_size()).sum((0, 1)) -token_probas = token_count / token_count.sum() -entropy = -torch.xlogy(token_probas, token_probas).sum() -train_set_perplexity = math.exp(entropy) +def add_hints_imt(imt_set): + """Set every component of the mask to zero with probability + args.proba_hint, and for each component set to zero, copy the + corresponding value from the target into the input + + """ + input, masks, targets = imt_set.unbind(dim=1) + # h = torch.rand(masks.size(), device=masks.device) - masks + # t = h.sort(dim=1).values[:, args.nb_hints, None] + # mask_hints = (h < t).long() + mask_hints = ( + torch.rand(input.size(), device=input.device) < args.proba_hint + ).long() * masks + masks = (1 - mask_hints) * masks + input = (1 - mask_hints) * input + mask_hints * targets + return torch.cat([input[:, None], masks[:, None], targets[:, None]], dim=1) + + +def add_noise_imt(imt_set): + """Replace every component of the input by a random value with + probability args.proba_prompt_noise.""" + input, masks, targets = imt_set.unbind(dim=1) + noise = problem.pure_noise(input.size(0), input.device) + change = (1 - masks) * ( + torch.rand(input.size(), device=input.device) < args.proba_prompt_noise + ).long() + input = (1 - change) * input + change * noise + return torch.cat([input[:, None], masks[:, None], targets[:, None]], dim=1) + ###################################################################### -# A bit of paranoia never hurts - -if args.max_percents_of_test_in_train >= 0: - - def subsets_as_tuples(batches, cs): - s = set() - for batch in batches: - for x in batch: - s.add(tuple([v.item() for v in x])) - if len(s) == cs: - yield s - s = set() - yield s - - nb_test, nb_in_train = 0, 0 - for test_subset in subsets_as_tuples( - task.batches(split="test", desc="test-check"), 25000 - ): - in_train = set() - for train_subset in subsets_as_tuples( - task.batches(split="train", desc="train-check"), 25000 - ): - in_train.update(test_subset.intersection(train_subset)) - nb_in_train += len(in_train) - nb_test += len(test_subset) +# Prediction - log_string( - f"data_check {nb_in_train*100/nb_test:.02f}% ({nb_in_train}/{nb_test}) of test samples are in the train set" - ) - assert ( - nb_in_train <= args.max_percents_of_test_in_train * nb_test / 100 - ), f"More than {args.max_percents_of_test_in_train}% of test samples are in the train set" +def samples_for_prediction_imt(input): + nb = input.size(0) + masks = input.new_zeros(input.size()) + u = F.one_hot(torch.randint(4, (nb,), device=masks.device), num_classes=4) + masks.view(nb, 4, -1)[...] = u[:, :, None] + targets = input + input = (1 - masks) * targets -############################## + return torch.cat([input[:, None], masks[:, None], targets[:, None]], dim=1) -def one_epoch(model, task): - optimizer = torch.optim.Adam(model.parameters(), lr=args.learning_rate) +def ae_predict(model, imt_set, local_device=main_device): + model.eval().to(local_device) - model.train() + record = [] - nb_train_samples, acc_train_loss = 0, 0.0 + src = tqdm.tqdm( + imt_set.split(args.eval_batch_size), + dynamic_ncols=True, + desc="predict", + total=imt_set.size(0) // args.eval_batch_size, + delay=10, + ) + + for imt in src: + # some paranoia + imt = imt.clone() + imt[:, 0] = imt[:, 0] * (1 - imt[:, 1]) - for input in task.batches(split="train"): - input = input.to(device) + with torch.amp.autocast(device_type="cuda", dtype=torch.bfloat16): + logits = model(imt[:, 0] * 2 + imt[:, 1]) + dist = torch.distributions.categorical.Categorical(logits=logits) + result = (1 - imt[:, 1]) * imt[:, 0] + imt[:, 1] * dist.sample() + record.append(result) - if nb_train_samples % args.batch_size == 0: - optimizer.zero_grad() + return torch.cat(record) - output = model(mygpt.BracketedSequence(input)).x - loss = F.cross_entropy(output.transpose(1, 2), input) - acc_train_loss += loss.item() * input.size(0) - nb_train_samples += input.size(0) +def predict_the_four_grids( + model, input, with_noise=False, with_hints=False, local_device=main_device +): + input = input[:, None, :].expand(-1, 4, -1).reshape(-1, input.size(1)) + nb = input.size(0) + masks = input.new_zeros(input.size()) + u = F.one_hot(torch.arange(nb, device=masks.device) % 4, num_classes=4) + masks.view(nb, 4, -1)[...] = u[:, :, None] + targets = input + input = (1 - masks) * targets + imt_set = torch.cat([input[:, None], masks[:, None], targets[:, None]], dim=1) - loss.backward() + if with_hints: + imt_set = add_hints_imt(imt_set) - if nb_train_samples % args.batch_size == 0: - optimizer.step() + if with_noise: + imt_set = add_noise_imt(imt_set) - train_perplexity = math.exp(min(100, acc_train_loss / nb_train_samples)) + result = ae_predict(model, imt_set, local_device=local_device) + result = (result * masks).reshape(-1, 4, result.size(1)).sum(dim=1) - log_string(f"train_perplexity {n_epoch} {train_perplexity}") + return result ###################################################################### -def run_tests(model, task, deterministic_synthesis): - with torch.autograd.no_grad(): - model.eval() +def samples_for_generation_imt(input): + nb = input.size(0) + probs_iterations = 0.1 ** torch.linspace( + 0, 1, args.diffusion_nb_iterations, device=input.device + ) + probs_iterations = probs_iterations[None, :] / probs_iterations.sum() + probs_iterations = probs_iterations.expand(nb, -1) + dist = torch.distributions.categorical.Categorical(probs=probs_iterations) + t = dist.sample() + 1 + r = torch.rand(input.size(), device=input.device) + proba_erased = 1 - (1 - args.diffusion_proba_corruption) ** t + mask_erased = (r <= proba_erased[:, None]).long() - nb_test_samples, acc_test_loss = 0, 0.0 - nb_samples_accumulated = 0 + noise = problem.pure_noise(nb, input.device) + targets = input + input = (1 - mask_erased) * input + mask_erased * noise + masks = input.new_full(input.size(), 1) - for input in task.batches(split="test"): - input = input.to(device) + return torch.cat([input[:, None], masks[:, None], targets[:, None]], dim=1) - bs = model(mygpt.BracketedSequence(input)) - output = bs.x - loss = F.cross_entropy(output.transpose(1, 2), input) +def prioritized_rand(low): + x = torch.rand(low.size(), device=low.device).sort(dim=1, descending=True).values + k = torch.rand(low.size(), device=low.device) + low.long() + k = k.sort(dim=1).indices + y = x.new(x.size()) + y.scatter_(dim=1, index=k, src=x) + return y - acc_test_loss += loss.item() * input.size(0) - nb_test_samples += input.size(0) +def ae_generate(model, nb, local_device=main_device): + model.eval().to(local_device) - main_test_accuracy = task.produce_results( - n_epoch=n_epoch, - model=model, - result_dir=args.result_dir, - logger=log_string, - deterministic_synthesis=deterministic_synthesis, + # We loop through the iterations first and through the + # mini-batches second so that we keep only the samples that have + # not stabilized + + all_input = problem.pure_noise(nb, local_device) + all_masks = all_input.new_full(all_input.size(), 1) + all_changed = torch.full((all_input.size(0),), True, device=all_input.device) + + for it in range(args.diffusion_nb_iterations): + # log_string(f"nb_changed {all_changed.long().sum().item()}") + + if not all_changed.any(): + break + + sub_input = all_input[all_changed].clone() + sub_masks = all_masks[all_changed].clone() + sub_changed = all_changed[all_changed].clone() + + src = zip( + sub_input.split(args.eval_batch_size), + sub_masks.split(args.eval_batch_size), + sub_changed.split(args.eval_batch_size), ) - test_perplexity = math.exp(min(100, acc_test_loss / nb_test_samples)) + for input, masks, changed in src: + with torch.amp.autocast(device_type="cuda", dtype=torch.bfloat16): + logits = model(input * 2 + masks) + dist = torch.distributions.categorical.Categorical(logits=logits) + output = dist.sample() + r = prioritized_rand(input != output) + mask_changes = (r <= args.diffusion_proba_corruption).long() * masks + update = (1 - mask_changes) * input + mask_changes * output + changed[...] = changed & (update != input).max(dim=1).values + input[...] = update - log_string(f"test_perplexity {n_epoch} {test_perplexity}") + a = all_changed.clone() + all_input[a] = sub_input + all_masks[a] = sub_masks + all_changed[a] = sub_changed - model.main_test_accuracy = main_test_accuracy + return all_input ###################################################################### -def create_c_quizzes( - model, - other_models, - task, - nb_for_train=1000, - nb_for_test=100, - desired_average_logits=None, +def one_epoch(model, n_epoch, c_quizzes, train=True, local_device=main_device): + quizzes = generate_quiz_set( + args.nb_train_samples if train else args.nb_test_samples, + c_quizzes, + args.c_quiz_multiplier, + ) + + q_p, q_g = quizzes.to(local_device).chunk(2) + + # Half of the samples train the prediction, and we inject noise in + # all, and hints in half + b_p = samples_for_prediction_imt(q_p) + b_p = add_noise_imt(b_p) + half = torch.rand(b_p.size(0)) < 0.5 + b_p[half] = add_hints_imt(b_p[half]) + + # The other half are denoising examples for the generation + b_g = samples_for_generation_imt(q_g) + + imt_set = torch.cat([b_p, b_g]) + imt_set = imt_set[torch.randperm(imt_set.size(0), device=imt_set.device)] + + if train: + label = "train" + model.train().to(local_device) + optimizer_to(model.optimizer, local_device) + batch_size = args.train_batch_size + else: + label = "test" + model.eval().to(local_device) + batch_size = args.eval_batch_size + + nb_samples, acc_loss = 0, 0.0 + + for imt in tqdm.tqdm( + imt_set.split(batch_size), + dynamic_ncols=True, + desc=label, + total=quizzes.size(0) // batch_size, + delay=10, + ): + input, masks, targets = imt.unbind(dim=1) + if train and nb_samples % args.batch_size == 0: + model.optimizer.zero_grad() + + with torch.amp.autocast(device_type="cuda", dtype=torch.bfloat16): + logits = model(input * 2 + masks) + + loss_per_token = F.cross_entropy( + logits.transpose(1, 2), targets, reduction="none" + ) + loss = (loss_per_token * masks).mean() + acc_loss += loss.item() * imt.size(0) + nb_samples += imt.size(0) + + if train: + loss.backward() + + if nb_samples % args.batch_size == 0: + model.optimizer.step() + + log_string(f"{label}_loss {n_epoch} model {model.id} {acc_loss/nb_samples}") + + +###################################################################### + + +def save_inference_images(model, n_epoch, c_quizzes, c_quiz_multiplier, local_device): + # Save some images of the prediction results + + quizzes = generate_quiz_set(150, c_quizzes, args.c_quiz_multiplier) + imt_set = samples_for_prediction_imt(quizzes.to(local_device)) + result = ae_predict(model, imt_set, local_device=local_device).to("cpu") + masks = imt_set[:, 1].to("cpu") + + correct = (quizzes == result).min(dim=1).values.long() + correct_parts = (2 * correct - 1)[:, None] * masks.reshape(masks.size(0), 4, -1)[ + :, :, 1 + ] + predicted_parts = correct_parts.abs() + + problem.save_quizzes_as_image( + args.result_dir, + f"culture_prediction_{n_epoch}_{model.id}.png", + quizzes=result[:128], + predicted_parts=predicted_parts[:128], + correct_parts=correct_parts[:128], + ) + + # Save some images of the ex nihilo generation of the four grids + + result = ae_generate(model, 150, local_device=local_device).to("cpu") + problem.save_quizzes_as_image( + args.result_dir, + f"culture_generation_{n_epoch}_{model.id}.png", + quizzes=result[:128], + ) + + +###################################################################### + + +def one_complete_epoch( + model, n_epoch, train_c_quizzes, test_c_quizzes, local_device=main_device ): - kept = [] + one_epoch(model, n_epoch, train_c_quizzes, train=True, local_device=local_device) + + one_epoch(model, n_epoch, test_c_quizzes, train=False, local_device=local_device) + + # Compute the test accuracy + + quizzes = generate_quiz_set(args.nb_test_samples, c_quizzes, args.c_quiz_multiplier) + imt_set = samples_for_prediction_imt(quizzes.to(local_device)) + result = ae_predict(model, imt_set, local_device=local_device).to("cpu") + correct = (quizzes == result).min(dim=1).values.long() + + nb_correct, nb_total = correct.sum().item(), quizzes.size(0) + model.test_accuracy = nb_correct / nb_total + + log_string( + f"test_accuracy {n_epoch} model {model.id} nb_correct {nb_correct} / {nb_total} ({model.test_accuracy*100:.02f}%)" + ) + + save_inference_images( + model, n_epoch, c_quizzes, args.c_quiz_multiplier, local_device=local_device + ) + + +###################################################################### + + +def max_nb_mistakes_on_one_grid(quizzes, prediction): + return ( + (prediction != quizzes) + .long() + .reshape(quizzes.size(0), 4, -1) + .sum(dim=2) + .max(dim=1) + .values + ) - sum_logits, sum_nb_c_quizzes = 0, 0 - while sum([x.size(0) for x in kept]) < nb_for_train + nb_for_test: - nb_to_generate = 4 * (nb_for_train + nb_for_test) +def evaluate_quizzes(quizzes, models, with_hints, local_device): + nb_correct, nb_wrong = 0, 0 - new_c_quizzes, nb_correct, average_logits = task.create_c_quizzes( - n_epoch=n_epoch, - result_dir=args.result_dir, - logger=log_string, - nb=nb_to_generate, + for model in models: + model = copy.deepcopy(model).to(local_device).eval() + predicted = predict_the_four_grids( model=model, - other_models=other_models, - desired_average_logits=desired_average_logits, + input=quizzes, + with_noise=False, + with_hints=with_hints, + local_device=local_device, ) + nb_mistakes = max_nb_mistakes_on_one_grid(quizzes, predicted) + nb_correct += (nb_mistakes == 0).long() + nb_wrong += (nb_mistakes >= args.nb_mistakes_to_be_wrong).long() + + # print("\n\n", nb_correct, nb_wrong) + + return nb_correct, nb_wrong + + +###################################################################### + + +def identity_quizzes(quizzes): + quizzes = quizzes.reshape(quizzes.size(0), 4, -1) + return (quizzes[:, 0] == quizzes[:, 1]).min(dim=1).values | ( + quizzes[:, 2] == quizzes[:, 3] + ).min(dim=1).values - sum_logits += new_c_quizzes.size(0) * average_logits - sum_nb_c_quizzes += new_c_quizzes.size(0) - to_keep = new_c_quizzes[nb_correct == len(other_models) - 1] +def generate_c_quizzes(models, nb_to_generate, local_device=main_device): + record = [] + nb_validated = 0 - if args.dirty_debug: - to_keep = new_c_quizzes + start_time = time.perf_counter() + last_log = -1 - log_string( - f"keep {to_keep.size(0)}/{new_c_quizzes.size(0)} c_quizzes ({to_keep.size(0)*100/new_c_quizzes.size(0):.02f}%)" + while nb_validated < nb_to_generate: + # Generate new quizzes + + model = models[torch.randint(len(models), (1,)).item()] + model = copy.deepcopy(model).to(local_device).eval() + generator_id = model.id + + c_quizzes = ae_generate( + model=model, nb=args.eval_batch_size * 10, local_device=local_device ) - kept.append(to_keep) + c_quizzes = c_quizzes[identity_quizzes(c_quizzes) == False] + + if c_quizzes.size(0) > 0: + # Select the ones that are solved properly by some models and + # not understood by others + + nb_correct, nb_wrong = evaluate_quizzes( + quizzes=c_quizzes, + models=models, + with_hints=True, + local_device=local_device, + ) + + to_keep = (nb_correct >= args.nb_have_to_be_correct) & ( + nb_wrong >= args.nb_have_to_be_wrong + ) + + nb_validated += to_keep.long().sum().item() + record.append(c_quizzes[to_keep]) + + ##################### + + duration = time.perf_counter() - start_time + + if last_log < 0 or duration > last_log + 10: + last_log = duration + if nb_validated > 0: + if nb_validated < nb_to_generate: + d = (nb_to_generate - nb_validated) * duration / nb_validated + e = ( + datetime.datetime.now() + datetime.timedelta(seconds=d) + ).strftime("%a %H:%M") + else: + e = "now!" + else: + e = "???" + + log_string( + f"nb_validated {nb_validated} model {generator_id} (finishes {e} -- {int((nb_validated * 3600)/duration)}/h)" + ) + + ##################### + + duration = time.perf_counter() - start_time - new_c_quizzes = torch.cat(kept, dim=0)[: nb_for_train + nb_for_test] + log_string(f"generate_c_quizz_speed {int(3600 * nb_validated / duration)}/h") + + return torch.cat(record).to("cpu") + + +###################################################################### + + +def multithread_execution(fun, arguments): + # Single instance, no thread + if len(arguments) == 1: + return fun(*(arguments[0])) + + records, threads = [], [] + + def threadable_fun(*args): + r = fun(*args) + if type(r) is not tuple: + r = (r,) + records.append(r) + + for args in arguments: + # To get a different sequence between threads + log_string(f"dummy_rand {torch.rand(1)}") + # torch.rand(1) + t = threading.Thread(target=threadable_fun, daemon=True, args=args) + threads.append(t) + t.start() + + for t in threads: + t.join() + + if records[0] == (None,): + return + else: + return [ + torch.cat([x[k] for x in records], dim=0) for k in range(len(records[0])) + ] + + +###################################################################### + + +def save_models(models, suffix=""): + if suffix != "": + suffix = "_" + suffix + + for model in models: + filename = f"ae_{model.id:03d}{suffix}.pth" + torch.save( + { + "state_dict": model.state_dict(), + "optimizer_state_dict": model.optimizer.state_dict(), + "test_accuracy": model.test_accuracy, + }, + os.path.join(args.result_dir, filename), + ) + + log_string(f"wrote ae_*{suffix}.pth") + + +###################################################################### + + +def save_quiz_image(models, c_quizzes, filename, local_device=main_device): + c_quizzes = c_quizzes.to(local_device) + + nb_correct, nb_wrong = evaluate_quizzes( + quizzes=c_quizzes, + models=models, + with_hints=False, + local_device=local_device, + ) - task.store_c_quizzes(new_c_quizzes[:nb_for_train], for_train=True) - task.store_c_quizzes(new_c_quizzes[nb_for_train:], for_train=False) + comments = [f"nb_correct {c} nb_wrong {w}" for c, w in zip(nb_correct, nb_wrong)] - task.save_quizzes( - new_c_quizzes[:72], + problem.save_quizzes_as_image( args.result_dir, - f"culture_c_quiz_{n_epoch:04d}_{model.id:02d}", - log_string, + filename, + quizzes=c_quizzes, + comments=comments, + delta=True, + nrow=8, ) - return sum_logits / sum_nb_c_quizzes + log_string(f"wrote {filename}") +###################################################################### + +problem = grids.Grids( + max_nb_cached_chunks=len(gpus) * args.nb_train_samples // 100, + chunk_size=100, + nb_threads=args.nb_threads, + tasks=args.grids_world_tasks, +) + +if not args.resume: + problem.save_some_examples(args.result_dir) + + +log_string(f"main_device {main_device} gpus {[ str(g) for g in gpus]}") + +vocabulary_size = problem.vocabulary_size() + +log_string(f"vocabulary_size {vocabulary_size}") + ###################################################################### models = [] -for k in range(args.nb_gpts): - model = mygpt.MyGPT( - vocabulary_size=vocabulary_size, +if args.model_type == "standard": + model_constructor = attae.AttentionAE +elif args.model_type == "functional": + model_constructor = attae.FunctionalAttentionAE +else: + raise ValueError(f"Unknown model type {args.model_type}") + + +for i in range(args.nb_models): + model = model_constructor( + vocabulary_size=vocabulary_size * 2, dim_model=args.dim_model, dim_keys=args.dim_keys, dim_hidden=args.dim_hidden, nb_heads=args.nb_heads, nb_blocks=args.nb_blocks, - causal=True, dropout=args.dropout, - ).to(device) + ) - model.main_test_accuracy = 0.0 - model.id = k + # model = torch.compile(model) + + model.id = i + model.test_accuracy = 0.0 + model.optimizer = torch.optim.Adam(model.parameters(), lr=args.learning_rate) models.append(model) +###################################################################### + +current_epoch = 0 + +if args.resume: + for model in models: + filename = f"ae_{model.id:03d}.pth" + + d = torch.load( + os.path.join(args.result_dir, filename), + map_location="cpu", + weights_only=False, + ) + model.load_state_dict(d["state_dict"]) + model.optimizer.load_state_dict(d["optimizer_state_dict"]) + model.test_accuracy = d["test_accuracy"] + log_string(f"successfully loaded {filename}") + + filename = "state.pth" + state = torch.load( + os.path.join(args.result_dir, filename), + map_location="cpu", + weights_only=False, + ) + + log_string(f"successfully loaded {filename}") + + current_epoch = state["current_epoch"] + train_c_quizzes = state["train_c_quizzes"] + test_c_quizzes = state["test_c_quizzes"] + +###################################################################### nb_parameters = sum(p.numel() for p in models[0].parameters()) log_string(f"nb_parameters {nb_parameters} ({int(nb_parameters/1e6)}M)") + ###################################################################### -desired_average_logits = None +train_c_quizzes, test_c_quizzes = None, None + +###################################################################### + +for n_epoch in range(current_epoch, args.nb_epochs): + start_time = time.perf_counter() + + state = { + "current_epoch": n_epoch, + "train_c_quizzes": train_c_quizzes, + "test_c_quizzes": test_c_quizzes, + } + + filename = "state.pth" + torch.save(state, os.path.join(args.result_dir, filename)) + log_string(f"wrote {filename}") -for n_epoch in range(args.nb_epochs): log_string(f"--- epoch {n_epoch} ----------------------------------------") - a = [(model.id, float(model.main_test_accuracy)) for model in models] - a.sort(key=lambda p: p[0]) - log_string(f"current accuracies {a}") + cta = " ".join([f"{float(m.test_accuracy):.04f}" for m in models]) + log_string(f"current_test_accuracies {cta}") - # select the model with lowest accuracy - models.sort(key=lambda model: model.main_test_accuracy) - model = models[0] + # -------------------------------------------------------------------- - log_string( - f"training model {model.id} main_test_accuracy {model.main_test_accuracy}" - ) + lowest_test_accuracy = min([float(m.test_accuracy) for m in models]) - # improve it - one_epoch(model, task) + if lowest_test_accuracy >= args.accuracy_to_make_c_quizzes: + if train_c_quizzes is None: + save_models(models, "naive") - task.renew_w_quizzes(args.nb_train_samples // args.nb_gpts) + nb_gpus = len(gpus) + nb_c_quizzes_to_generate = (args.nb_c_quizzes + nb_gpus - 1) // nb_gpus - log_string( - f"train_set_composition w_quizzes {task.nb_batch_w_quizzes} c_quizzes {task.nb_batch_c_quizzes}" - ) + (new_c_quizzes,) = multithread_execution( + generate_c_quizzes, + [(models, nb_c_quizzes_to_generate, gpu) for gpu in gpus], + ) - # test it - run_tests(model, task, deterministic_synthesis=False) + save_quiz_image( + models, new_c_quizzes[:256], f"culture_c_quiz_{n_epoch:04d}.png" + ) - log_string( - f"test_set_composition w_quizzes {task.nb_batch_w_quizzes} c_quizzes {task.nb_batch_c_quizzes}" - ) + log_string(f"generated_c_quizzes {new_c_quizzes.size()}") - if min([m.main_test_accuracy for m in models]) >= accuracy_to_make_c_quizzes: - other_models = models.copy() - other_models.remove(model) - - average_logits = create_c_quizzes( - model, - other_models, - task, - nb_for_train=nb_new_c_quizzes_for_train, - nb_for_test=nb_new_c_quizzes_for_test, - desired_average_logits=desired_average_logits, + train_c_quizzes = ( + new_c_quizzes + if train_c_quizzes is None + else torch.cat([train_c_quizzes, new_c_quizzes]) ) + train_c_quizzes = train_c_quizzes[-args.nb_train_samples :] - # We keep the first average logits as a reference - if desired_average_logits is None: - desired_average_logits = average_logits - else: - log_string( - f"desired_average_logits {desired_average_logits} average_logits {average_logits}" - ) + nb_correct, _ = evaluate_quizzes( + quizzes=train_c_quizzes, + models=models, + with_hints=False, + local_device=local_device, + ) + + test_c_quizzes = train_c_quizzes[nb_correct >= args.nb_have_to_be_correct] - # We update everyone for model in models: - run_tests(model, task, deterministic_synthesis=False) + model.test_accuracy = 0 + if train_c_quizzes is None: + log_string("no_c_quiz") + else: + log_string(f"nb_c_quizzes {train_c_quizzes.size(0)}") -###################################################################### + # -------------------------------------------------------------------- + + ranked_models = sorted(models, key=lambda m: float(m.test_accuracy)) + weakest_models = ranked_models[: len(gpus)] + + log_string( + f"weakest_accuracies {[model.test_accuracy for model in weakest_models]}" + ) + + multithread_execution( + one_complete_epoch, + [ + (model, n_epoch, train_c_quizzes, test_c_quizzes, gpu) + for model, gpu in zip(weakest_models, gpus) + ], + ) + + save_models(models) + + # -------------------------------------------------------------------- + + duration = time.perf_counter() - start_time + str_duration = "" + if duration >= 60: + str_duration += f"{int(duration)//60}min" + str_duration += f"{int(duration)%60}s" + str_next = ( + datetime.datetime.now() + datetime.timedelta(seconds=duration) + ).strftime("%H:%M:%S") + log_string(f"epoch_duration {str_duration} next_finish {str_next}")