X-Git-Url: https://fleuret.org/cgi-bin/gitweb/gitweb.cgi?a=blobdiff_plain;ds=inline;f=world.py;h=36aa1e97638403195c0d711fde941be83ef17a7a;hb=fc1de19bf86b2cfd09264dfc6fbda1937248a40a;hp=bac9e761e248bb64547aada2bac7109f0099d38d;hpb=e38b98574f1966ea3a91ffb8fd9042f10a75ca88;p=culture.git diff --git a/world.py b/world.py index bac9e76..36aa1e9 100755 --- a/world.py +++ b/world.py @@ -1,150 +1,339 @@ #!/usr/bin/env python -import math +# Any copyright is dedicated to the Public Domain. +# https://creativecommons.org/publicdomain/zero/1.0/ + +# Written by Francois Fleuret + +import math, sys, tqdm import torch, torchvision from torch import nn from torch.nn import functional as F -import cairo - - -class Box: - def __init__(self, x, y, w, h, r, g, b): - self.x = x - self.y = y - self.w = w - self.h = h - self.r = r - self.g = g - self.b = b - - def collision(self, scene): - for c in scene: - if ( - self is not c - and max(self.x, c.x) <= min(self.x + self.w, c.x + c.w) - and max(self.y, c.y) <= min(self.y + self.h, c.y + c.h) - ): - return True - return False - - -def scene2tensor(xh, yh, scene, size=512): - width, height = size, size - pixel_map = torch.ByteTensor(width, height, 4).fill_(255) - data = pixel_map.numpy() - surface = cairo.ImageSurface.create_for_data( - data, cairo.FORMAT_ARGB32, width, height - ) - ctx = cairo.Context(surface) - ctx.set_fill_rule(cairo.FILL_RULE_EVEN_ODD) - - for b in scene: - ctx.move_to(b.x * size, b.y * size) - ctx.rel_line_to(b.w * size, 0) - ctx.rel_line_to(0, b.h * size) - ctx.rel_line_to(-b.w * size, 0) - ctx.close_path() - ctx.set_source_rgba(b.r, b.g, b.b, 1.0) - ctx.fill_preserve() - ctx.set_source_rgba(0, 0, 0, 1.0) - ctx.stroke() - - hs = size * 0.05 - ctx.set_source_rgba(0.0, 0.0, 0.0, 1.0) - ctx.move_to(xh * size - hs / 2, yh * size - hs / 2) - ctx.rel_line_to(hs, 0) - ctx.rel_line_to(0, hs) - ctx.rel_line_to(-hs, 0) - ctx.close_path() - ctx.fill() - - return pixel_map[None, :, :, :3].flip(-1).permute(0, 3, 1, 2).float() / 255 - - -def random_scene(): - scene = [] - colors = [ - (1.00, 0.00, 0.00), - (0.00, 1.00, 0.00), - (0.00, 0.00, 1.00), - (1.00, 1.00, 0.00), - (0.75, 0.75, 0.75), - ] +###################################################################### - for k in range(10): - wh = torch.rand(2) * 0.2 + 0.2 - xy = torch.rand(2) * (1 - wh) - c = colors[torch.randint(len(colors), (1,))] - b = Box( - xy[0].item(), xy[1].item(), wh[0].item(), wh[1].item(), c[0], c[1], c[2] - ) - if not b.collision(scene): - scene.append(b) - - return scene - - -def sequence(length=10): - delta = 0.1 - effects = [ - (False, 0, 0), - (False, delta, 0), - (False, 0, delta), - (False, -delta, 0), - (False, 0, -delta), - (True, delta, 0), - (True, 0, delta), - (True, -delta, 0), - (True, 0, -delta), + +colors = torch.tensor( + [ + [255, 255, 255], + [255, 0, 0], + [0, 192, 0], + [0, 0, 255], + [255, 192, 0], + [0, 255, 255], + [255, 0, 255], + [192, 255, 192], + [255, 192, 192], + [192, 192, 255], + [192, 192, 192], ] +) + +token_background = 0 +first_bird_token = 1 +nb_bird_tokens = colors.size(0) - 1 +token_forward = first_bird_token + nb_bird_tokens +token_backward = token_forward + 1 + +token2char = "_" + "".join([chr(ord("A") + n) for n in range(len(colors) - 1)]) + "><" + + +def generate_seq( + nb, height, width, nb_birds=3, nb_iterations=2, return_iterations=False +): + pairs = [] + kept_iterations = [] + + for _ in tqdm.tqdm(range(nb), dynamic_ncols=True, desc="world generation"): + while True: + iterations = [] + + f_start = torch.zeros(height, width, dtype=torch.int64) + + i, j, vi, vj = ( + torch.empty(nb_birds, dtype=torch.int64), + torch.empty(nb_birds, dtype=torch.int64), + torch.empty(nb_birds, dtype=torch.int64), + torch.empty(nb_birds, dtype=torch.int64), + ) + + col = torch.randperm(colors.size(0) - 1)[:nb_birds].sort().values + 1 + + for n in range(nb_birds): + c = col[n] + + while True: + i[n], j[n] = ( + torch.randint(height, (1,))[0], + torch.randint(width, (1,))[0], + ) + vm = torch.randint(4, (1,))[0] + vi[n], vj[n] = (vm % 2) * 2 - 1, (vm // 2) * 2 - 1 + if ( + i[n] - vi[n] >= 0 + and i[n] - vi[n] < height + and j[n] - vj[n] >= 0 + and j[n] - vj[n] < width + and f_start[i[n], j[n]] == 0 + and f_start[i[n] - vi[n], j[n]] == 0 + and f_start[i[n], j[n] - vj[n]] == 0 + ): + break + + f_start[i[n], j[n]] = c + f_start[i[n] - vi[n], j[n]] = c + f_start[i[n], j[n] - vj[n]] = c + + f_end = f_start.clone() + + for l in range(nb_iterations): + iterations.append(f_end.clone()) + f_end[...] = 0 + nb_collisions = 0 + for n in range(nb_birds): + c = col[n] + + pi, pj, pvi, pvj = ( + i[n].item(), + j[n].item(), + vi[n].item(), + vj[n].item(), + ) + + if (i[n] == 0 and vi[n] == -1) or ( + i[n] == height - 1 and vi[n] == 1 + ): + vi[n] = -vi[n] + if (j[n] == 0 and vj[n] == -1) or ( + j[n] == width - 1 and vj[n] == 1 + ): + vj[n] = -vj[n] + + i[n] += vi[n] + j[n] += vj[n] + + if not ( + f_end[i[n], j[n]] == 0 + and f_end[i[n] - vi[n], j[n]] == 0 + and f_end[i[n], j[n] - vj[n]] == 0 + ): + nb_collisions += 1 + + f_end[i[n], j[n]] = c + f_end[i[n] - vi[n], j[n]] = c + f_end[i[n], j[n] - vj[n]] = c + + iterations.append(f_end.clone()) + + if nb_collisions == 0: + break + + kept_iterations.append(iterations) + pairs.append((f_start, f_end)) + + result = [] + for p in pairs: + if torch.rand(1) < 0.5: + result.append( + torch.cat( + [p[0].flatten(), torch.tensor([token_forward]), p[1].flatten()], + dim=0, + )[None, :] + ) + else: + result.append( + torch.cat( + [p[1].flatten(), torch.tensor([token_backward]), p[0].flatten()], + dim=0, + )[None, :] + ) + + if return_iterations: + # iterations = torch.cat([ torch.cat([ x[None, None] for x in l], dim = 1) for l in kept_iterations ], dim=0) + return torch.cat(result, dim=0), kept_iterations + else: + return torch.cat(result, dim=0) + + +###################################################################### + - while True: - scene = random_scene() - xh, yh = tuple(x.item() for x in torch.rand(2)) - - frame_start = scene2tensor(xh, yh, scene) - - actions = torch.randint(len(effects), (length,)) - change = False - - for a in actions: - g, dx, dy = effects[a] - if g: - for b in scene: - if b.x <= xh and b.x + b.w >= xh and b.y <= yh and b.y + b.h >= yh: - x, y = b.x, b.y - b.x += dx - b.y += dy - if ( - b.x < 0 - or b.y < 0 - or b.x + b.w > 1 - or b.y + b.h > 1 - or b.collision(scene) - ): - b.x, b.y = x, y - else: - xh += dx - yh += dy - change = True - else: - x, y = xh, yh - xh += dx - yh += dy - if xh < 0 or xh > 1 or yh < 0 or yh > 1: - xh, yh = x, y - - frame_end = scene2tensor(xh, yh, scene) - if change: - break - - return frame_start, frame_end, actions +def generate_seq_old( + nb, + height, + width, + nb_birds=3, + nb_iterations=2, +): + pairs = [] + for n in tqdm.tqdm(range(nb), dynamic_ncols=True, desc="world generation"): + f_start = torch.zeros(height, width, dtype=torch.int64) + f_end = torch.zeros(height, width, dtype=torch.int64) + n = torch.arange(f_start.size(0)) + + for c in ( + (torch.randperm(nb_bird_tokens) + first_bird_token)[:nb_birds].sort().values + ): + i, j = ( + torch.randint(height - 2, (1,))[0] + 1, + torch.randint(width - 2, (1,))[0] + 1, + ) + vm = torch.randint(4, (1,))[0] + vi, vj = (vm // 2) * (2 * (vm % 2) - 1), (1 - vm // 2) * (2 * (vm % 2) - 1) + + f_start[i, j] = c + f_start[i - vi, j - vj] = c + f_start[i + vj, j - vi] = c + f_start[i - vj, j + vi] = c + + for l in range(nb_iterations): + i += vi + j += vj + if i < 0 or i >= height or j < 0 or j >= width: + i -= vi + j -= vj + vi, vj = -vi, -vj + i += vi + j += vj + + f_end[i, j] = c + f_end[i - vi, j - vj] = c + f_end[i + vj, j - vi] = c + f_end[i - vj, j + vi] = c + + pairs.append((f_start, f_end)) + + result = [] + for p in pairs: + if torch.rand(1) < 0.5: + result.append( + torch.cat( + [p[0].flatten(), torch.tensor([token_forward]), p[1].flatten()], + dim=0, + )[None, :] + ) + else: + result.append( + torch.cat( + [p[1].flatten(), torch.tensor([token_backward]), p[0].flatten()], + dim=0, + )[None, :] + ) + + return torch.cat(result, dim=0) + + +def frame2img(x, height, width, upscale=15): + x = x.reshape(-1, height, width) + m = torch.logical_and(x >= 0, x < first_bird_token + nb_bird_tokens).long() + x = colors[x * m].permute(0, 3, 1, 2) + s = x.shape + x = x[:, :, :, None, :, None].expand(-1, -1, -1, upscale, -1, upscale) + x = x.reshape(s[0], s[1], s[2] * upscale, s[3] * upscale) + + x[:, :, :, torch.arange(0, x.size(3), upscale)] = 0 + x[:, :, torch.arange(0, x.size(2), upscale), :] = 0 + x = x[:, :, 1:, 1:] + + for n in range(m.size(0)): + for i in range(m.size(1)): + for j in range(m.size(2)): + if m[n, i, j] == 0: + for k in range(2, upscale - 2): + x[n, :, i * upscale + k, j * upscale + k] = 0 + x[n, :, i * upscale + upscale - 1 - k, j * upscale + k] = 0 + + return x + + +def seq2img(seq, height, width, upscale=15): + f_first = seq[:, : height * width].reshape(-1, height, width) + f_second = seq[:, height * width + 1 :].reshape(-1, height, width) + direction = seq[:, height * width] + + direction_symbol = torch.full((direction.size(0), height * upscale - 1, upscale), 0) + direction_symbol = colors[direction_symbol].permute(0, 3, 1, 2) + separator = torch.full((direction.size(0), 3, height * upscale - 1, 1), 0) + + for n in range(direction_symbol.size(0)): + if direction[n] == token_forward: + for k in range(upscale): + direction_symbol[ + n, + :, + (height * upscale) // 2 - upscale // 2 + k, + 3 + upscale // 2 - abs(k - upscale // 2), + ] = 0 + elif direction[n] == token_backward: + for k in range(upscale): + direction_symbol[ + n, + :, + (height * upscale) // 2 - upscale // 2 + k, + 3 + abs(k - upscale // 2), + ] = 0 + else: + for k in range(2, upscale - 2): + direction_symbol[ + n, :, (height * upscale) // 2 - upscale // 2 + k, k + ] = 0 + direction_symbol[ + n, :, (height * upscale) // 2 - upscale // 2 + k, upscale - 1 - k + ] = 0 + + return torch.cat( + [ + frame2img(f_first, height, width, upscale), + separator, + direction_symbol, + separator, + frame2img(f_second, height, width, upscale), + ], + dim=3, + ) + + +def seq2str(seq): + result = [] + for s in seq: + result.append("".join([token2char[v] for v in s])) + return result + + +###################################################################### if __name__ == "__main__": - frame_start, frame_end, actions = sequence() - torchvision.utils.save_image(frame_start, "world_start.png") - torchvision.utils.save_image(frame_end, "world_end.png") + import time + + height, width = 6, 8 + start_time = time.perf_counter() + seq, it = generate_seq( + nb=64, height=height, width=width, nb_iterations=100, return_iterations=True + ) + delay = time.perf_counter() - start_time + print(f"{seq.size(0)/delay:02f} samples/s") + + print(seq2str(seq[:4])) + + for t in range(len(it[0])): + img = torch.cat([frame2img(f[t], height, width) for f in it], dim=0) + torchvision.utils.save_image( + img.float() / 255.0, + f"/tmp/frame_{t:03d}.png", + nrow=8, + padding=6, + pad_value=0, + ) + + # m = (torch.rand(seq.size()) < 0.05).long() + # seq = (1 - m) * seq + m * 23 + + img = seq2img(seq, height, width) + print(img.size()) + + torchvision.utils.save_image( + img.float() / 255.0, "/tmp/world.png", nrow=6, padding=6, pad_value=0 + )