AMMI – Introduction to Deep Learning

9.1. Transposed convolutions

François Fleuret
https://fleuret.org/ammi-2018/
Fri Nov 9 22:39:08 UTC 2018
Constructing deep generative architectures requires layers to increase the signal dimension, the contrary of what we have done so far with feed-forward networks.
Constructing deep generative architectures requires layers to increase the signal dimension, the contrary of what we have done so far with feed-forward networks.

Generative processes that consist of optimizing the input rely on back-propagation to expend the signal from a low-dimension representation to the high-dimension signal space.
Constructing deep generative architectures requires layers to increase the signal dimension, the contrary of what we have done so far with feed-forward networks.

Generative processes that consist of optimizing the input rely on back-propagation to expend the signal from a low-dimension representation to the high-dimension signal space.

The same can be done in the forward pass with transposed convolution layers whose forward operation corresponds to a convolution layer backward pass.
Consider a 1d convolution with a kernel κ

$$y_i = (x \otimes \kappa)_i$$

$$= \sum_a x_{i+a-1} \kappa_a$$

$$= \sum_u x_u \kappa_{u-i+1}.$$

which looks a lot like a standard convolution layer, except that the kernel coefficients are visited in reverse order.
Consider a 1d convolution with a kernel κ

$$y_i = (x \ast \kappa)_i$$

$$= \sum_a x_{i+a-1} \kappa_a$$

$$= \sum_u x_u \kappa_{u-i+1}.$$

We get

$$\left[\frac{\partial \ell}{\partial x} \right]_u = \frac{\partial \ell}{\partial x_u}$$

$$= \sum_i \frac{\partial \ell}{\partial y_i} \frac{\partial y_i}{\partial x_u}$$

$$= \sum_i \frac{\partial \ell}{\partial y_i} \kappa_{u-i+1}.$$

which looks a lot like a standard convolution layer, except that the kernel coefficients are visited in reverse order.
This is actually the standard convolution operator from signal processing. If $*$ denotes this operation, we have

$$(x * \kappa)_i = \sum_a x_a \kappa_{i-a+1}.$$
This is actually the standard convolution operator from signal processing. If \(\ast \) denotes this operation, we have

\[
(x \ast \kappa)_i = \sum_a x_a \kappa_{i-a+1}.
\]

Coming back to the backward pass of the convolution layer, if

\[
y = x \odot \kappa
\]

then

\[
\left[\frac{\partial \ell}{\partial x} \right] = \left[\frac{\partial \ell}{\partial y} \right] \ast \kappa.
\]
In the deep-learning field, since it corresponds to transposing the weight matrix of the equivalent fully-connected layer, it is called a **transposed convolution**.

\[
\begin{pmatrix}
\kappa_1 & \kappa_2 & \kappa_3 & 0 & 0 & 0 & 0 \\
0 & \kappa_1 & \kappa_2 & \kappa_3 & 0 & 0 & 0 \\
0 & 0 & \kappa_1 & \kappa_2 & \kappa_3 & 0 & 0 \\
0 & 0 & 0 & \kappa_1 & \kappa_2 & \kappa_3 & 0 \\
0 & 0 & 0 & 0 & \kappa_1 & \kappa_2 & \kappa_3
\end{pmatrix}^T = \begin{pmatrix}
\kappa_1 & 0 & 0 & 0 & 0 & 0 & 0 \\
\kappa_2 & \kappa_1 & 0 & 0 & 0 & 0 & 0 \\
\kappa_3 & \kappa_2 & \kappa_1 & 0 & 0 & 0 & 0 \\
0 & \kappa_3 & \kappa_2 & \kappa_1 & 0 & 0 & 0 \\
0 & 0 & \kappa_3 & \kappa_2 & \kappa_1 & 0 & 0 \\
0 & 0 & 0 & \kappa_3 & \kappa_2 & \kappa_1 & 0 \\
0 & 0 & 0 & 0 & \kappa_3 & \kappa_2 & \kappa_1
\end{pmatrix}
\]
In the deep-learning field, since it corresponds to transposing the weight matrix of the equivalent fully-connected layer, it is called a transposed convolution.

\[
\begin{pmatrix}
\kappa_1 & \kappa_2 & \kappa_3 & 0 & 0 & 0 & 0 \\
0 & \kappa_1 & \kappa_2 & \kappa_3 & 0 & 0 & 0 \\
0 & 0 & \kappa_1 & \kappa_2 & \kappa_3 & 0 & 0 \\
0 & 0 & 0 & \kappa_1 & \kappa_2 & \kappa_3 & 0 \\
0 & 0 & 0 & 0 & \kappa_1 & \kappa_2 & \kappa_3 \\
0 & 0 & 0 & 0 & 0 & \kappa_1 & \kappa_2 & \kappa_3
\end{pmatrix}^T =
\begin{pmatrix}
\kappa_1 & 0 & 0 & 0 & 0 & 0 \\
\kappa_2 & \kappa_1 & 0 & 0 & 0 & 0 \\
\kappa_3 & \kappa_2 & \kappa_1 & 0 & 0 \\
0 & \kappa_3 & \kappa_2 & \kappa_1 & 0 \\
0 & 0 & \kappa_3 & \kappa_2 & \kappa_1 \\
0 & 0 & 0 & \kappa_3 & \kappa_2 & \kappa_1 \\
0 & 0 & 0 & 0 & \kappa_3
\end{pmatrix}
\]

While a convolution can be seen as a series of inner products, a transposed convolution can be seen as a weighted sum of translated kernels.
Convolution layer

Input

\[
\begin{array}{cccccccc}
1 & 4 & -1 & 0 & 2 & -2 & 1 & 3 & 3 & 1
\end{array}
\]
Convolution layer

Input

\[
\begin{array}{cccccccc}
1 & 4 & -1 & 0 & 2 & -2 & 1 & 3 & 3 & 1 \\
\end{array}
\]

Kernel

\[
\begin{array}{cccc}
1 & 2 & 0 & -1 \\
\end{array}
\]
Convolution layer

Input

\[
\begin{array}{ccccccccc}
1 & 4 & -1 & 0 & 2 & -2 & 1 & 3 & 3 & 1 \\
\end{array}
\]

Output

\[
\begin{array}{c}
9 \\
\end{array}
\]
Convolution layer

Input

\[
\begin{array}{cccccccccc}
1 & 4 & -1 & 0 & 2 & -2 & 1 & 3 & 3 & 1 \\
\end{array}
\]

Kernel

\[
\begin{array}{cccc}
1 & 2 & 0 & -1 \\
\end{array}
\]

Output

\[
\begin{array}{c}
9 & 0 \\
\end{array}
\]

\[W - w + 1\]
Convolution layer

Input

\[
\begin{array}{cccccccc}
1 & 4 & -1 & 0 & 2 & -2 & 1 & 3 & 3 & 1 \\
\end{array}
\]

\[
W - w + 1
\]

Output

\[
\begin{array}{ccc}
9 & 0 & 1 \\
\end{array}
\]
Convolution layer

Input

\[
\begin{array}{ccccccc}
1 & 4 & -1 & 0 & 2 & -2 & 1 \\
\end{array}
\]

\[W\]

Kernel

\[
\begin{array}{cccc}
1 & 2 & 0 & -1 \\
\end{array}
\]

\[w\]

Output

\[
\begin{array}{cccc}
9 & 0 & 1 & 3 \\
\end{array}
\]

\[W - w + 1\]
Convolution layer

Input

\[
\begin{array}{cccccccc}
1 & 4 & -1 & 0 & 2 & -2 & 1 & 3 & 3 & 1
\end{array}
\]

\[W\]

Output

\[
\begin{array}{cccc}
9 & 0 & 1 & 3 & -5
\end{array}
\]

\[W - w + 1\]
Convolution layer

```
1  4  -1  0  2  -2  1  3  3  1
```

Input

```
1  2  0  -1
```

Output

```
9  0  1  3  -5  -3
```

$W - w + 1$
Convolution layer

Input

\[
\begin{array}{ccccccc}
1 & 4 & -1 & 0 & 2 & -2 & 1 & 3 & 3 & 1 \\
\end{array}
\]

\[
W - w + 1
\]

Output

\[
\begin{array}{ccccccc}
9 & 0 & 1 & 3 & -5 & -3 & 6 \\
\end{array}
\]
Convolution layer

Input

\[\begin{array}{cccccccc}
1 & 4 & -1 & 0 & 2 & -2 & 1 & 3 & 3 & 1
\end{array}\]

Kernel

\[\begin{array}{cccc}
1 & 2 & 0 & -1
\end{array}\]

Output

\[\begin{array}{cccccccc}
9 & 0 & 1 & 3 & -5 & -3 & 6
\end{array}\]

\(W - w + 1\)
Transposed convolution layer

Input

\[
\begin{array}{cccc}
2 & 3 & 0 & -1 \\
\end{array}
\]

\[
\mathbf{W}
\]

Kernel

\[
\begin{array}{ccc}
1 & 2 & -1 \\
\end{array}
\]

\[
\mathbf{w}
\]
Transposed convolution layer

Input:

\[
\begin{array}{cccc}
2 & 3 & 0 & -1 \\
\end{array}
\]

Kernel:

\[
\begin{array}{ccc}
1 & 2 & -1 \\
2 & 4 & -2 \\
\end{array}
\]

Output:

\[
\begin{array}{c}
2 \\
\end{array}
\]

\[W + w - 1\]
Transposed convolution layer

Input

\[
\begin{array}{cccc}
2 & 3 & 0 & -1 \\
\end{array}
\]

\[W\]

\[
\begin{array}{ccc}
1 & 2 & -1 \\
2 & 4 & -2 \\
3 & 6 & -3 \\
\end{array}
\]

Output

\[
\begin{array}{cc}
2 & 7 \\
\end{array}
\]

\[W + w - 1\]
Transposed convolution layer

\[\text{Output} = W + w - 1 \]

Input:

\[
\begin{bmatrix}
2 & 3 & 0 & -1 \\
\end{bmatrix}
\]

Kernel:

\[
\begin{bmatrix}
1 & 2 & -1 \\
2 & 4 & -2 \\
3 & 6 & -3 \\
0 & 0 & 0 \\
\end{bmatrix}
\]

Output:

\[
\begin{bmatrix}
2 & 7 & 4 \\
\end{bmatrix}
\]
Transposed convolution layer

\[W + w - 1 \]

Input:

\[
\begin{bmatrix}
2 & 3 & 0 & -1
\end{bmatrix}
\]

Kernel:

\[
\begin{bmatrix}
1 & 2 & -1 \\
2 & 4 & -2 \\
3 & 6 & -3 \\
0 & 0 & 0 \\
-1 & -2 & 1
\end{bmatrix}
\]

Output:

\[
\begin{bmatrix}
2 & 7 & 4 & -4 & -2 & 1
\end{bmatrix}
\]
Transposed convolution layer

\[
\begin{align*}
\text{Input} & \quad \begin{bmatrix} 2 & 3 & 0 & -1 \end{bmatrix} \\
\text{Kernel} & \quad \begin{bmatrix} 2 & 4 & -2 \\ 3 & 6 & -3 \\ 0 & 0 & 0 \\ -1 & -2 & 1 \end{bmatrix} \\
\text{Output} & \quad \begin{bmatrix} 2 & 7 & 4 & -4 & -2 & 1 \end{bmatrix}
\end{align*}
\]
Transposed convolution layer

Input

\[
\begin{array}{c}
W \\
2 & 3 & 0 & -1
\end{array}
\]

Kernel

\[
\begin{array}{c}
w \\
1 & 2 & -1
\end{array}
\]

Output

\[
\begin{array}{c}
W + w - 1 \\
2 & 7 & 4 & -4 & -2 & 1
\end{array}
\]
torch.nn.functional.conv_transpose1d implements the operation we just described. It takes as input a batch of multi-channel samples, and produces a batch of multi-channel samples.

```python
>>> x = torch.tensor([[0., 0., 1., 0., 0., 0., 0.]])
>>> k = torch.tensor([[1., 2., 3.]])
>>> F.conv1d(x, k)
tensor([[ 3., 2., 1., 0., 0.]])
```

```python
>>> F.conv_transpose1d(x, k)
tensor([[ 0., 0., 1., 2., 3., 0., 0., 0., 0.]])
```

Francois Fleuret – Introduction to Deep Learning / 9.1. Transposed convolutions
torch.nn.functional.conv_transpose1d implements the operation we just described. It takes as input a batch of multi-channel samples, and produces a batch of multi-channel samples.

```python
>>> x = torch.tensor([[0., 0., 1., 0., 0., 0., 0.]])
>>> k = torch.tensor([[1., 2., 3.]])
>>> F.conv1d(x, k)
tensor([[ 3., 2., 1., 0., 0.]])
```

```
⊗
```

```python
>>> F.conv_transpose1d(x, k)
tensor([[ 0., 0., 1., 2., 3., 0., 0., 0., 0.]])
```

```
∗
```
The class `torch.nn.ConvTranspose1d` embeds that operation into a `torch.nn.Module`.

```python
code
>>> x = torch.tensor([[2., 3., 0., -1.]])
>>> m = nn.ConvTranspose1d(1, 1, kernel_size=3)
>>> m.bias.data.zero_()
tensor([ 0.])
>>> m.weight.data.copy_(Tensor([1, 2, -1]))
tensor([[ 1., 2., -1.]])
>>> y = m(x)
>>> y
tensor([[ 2., 7., 4., -4., -2., 1.]])
```
Transposed convolutions also have a **dilation** parameter that behaves as for convolution and expends the kernel size without increasing the number of parameters by making it sparse.
Transposed convolutions also have a **dilation** parameter that behaves as for convolution and expends the kernel size without increasing the number of parameters by making it sparse.

They also have a **stride** and **padding** parameters, however, due to the relation between convolutions and transposed convolutions:

While for convolutions **stride** and **padding** are defined in the input map, for transposed convolutions these parameters are defined in the output map, and the latter modulates a cropping operation.
Transposed convolution layer (stride = 2)

\[\text{Output} = s(W - 1) + w \]
Transposed convolution layer (stride = 2)

Input

\[\begin{bmatrix} 2 & 3 & 0 & -1 \end{bmatrix} \]

\[W \]

Kernel

\[\begin{bmatrix} 1 & 2 & -1 \\ 2 & 4 & -2 \end{bmatrix} \]

Output

\[\begin{bmatrix} 2 & 4 \end{bmatrix} \]

\[s(W - 1) + w \]
Transposed convolution layer (stride = 2)

Input

\[
\begin{array}{cccc}
2 & 3 & 0 & -1 \\
\end{array}
\]

\(W\)

\[
\begin{array}{ccc}
1 & 2 & -1 \\
\end{array}
\]

\(s\)

\[
\begin{array}{ccc}
2 & 4 & -2 \\
\end{array}
\]

\[
\begin{array}{ccc}
3 & 6 & -3 \\
\end{array}
\]

Output

\[
\begin{array}{cccc}
2 & 4 & 1 & 6 \\
\end{array}
\]

\(s(W - 1) + w\)
Transposed convolution layer (stride = 2)

Input

\[\begin{array}{ccc}
 2 & 3 & 0 \\
\end{array} \]

Kernel

\[\begin{array}{ccc}
 1 & 2 & -1 \\
\end{array} \]

Output

\[\begin{array}{ccccccc}
 2 & 4 & 1 & 6 & -3 & 0 \\
\end{array} \]

\[s(W - 1) + w \]
Transposed convolution layer (stride = 2)

Input

\[
\begin{pmatrix}
2 & 3 & 0 & -1
\end{pmatrix}
\]

\[W\]

\[
\begin{pmatrix}
1 & 2 & -1
\end{pmatrix}
\]

\[s\]

\[
\begin{pmatrix}
2 & 4 & -2
\end{pmatrix}
\]

\[s\]

\[
\begin{pmatrix}
3 & 6 & -3
\end{pmatrix}
\]

\[s\]

\[
\begin{pmatrix}
0 & 0 & 0
\end{pmatrix}
\]

\[s\]

\[
\begin{pmatrix}
-1 & -2 & 1
\end{pmatrix}
\]

Output

\[
\begin{pmatrix}
2 & 4 & 1 & 6 & -3 & 0 & -1 & -2 & 1
\end{pmatrix}
\]

\[s(W - 1) + w\]
Transposed convolution layer (stride $= 2$)

$$s(W - 1) + w$$
Transposed convolution layer (stride = 2)

Input

\[
\begin{array}{cccc}
2 & 3 & 0 & -1 \\
\end{array}
\]

Kernel

\[
\begin{array}{ccc}
1 & 2 & -1 \\
\end{array}
\]

Output

\[
\begin{array}{cccccccc}
2 & 4 & 1 & 6 & -3 & 0 & -1 & -2 & 1 \\
\end{array}
\]
The composition of a convolution and a transposed convolution of same parameters keep the signal size [roughly] unchanged.

A convolution with a stride greater than one may ignore parts of the signal. Its composition with the corresponding transposed convolution generates a map of the size of the observed area.
The composition of a convolution and a transposed convolution of same parameters keep the signal size [roughly] unchanged.

A convolution with a stride greater than one may ignore parts of the signal. Its composition with the corresponding transposed convolution generates a map of the size of the observed area.

For instance, a 1d convolution of kernel size \(w \) and stride \(s \) composed with the transposed convolution of same parameters maintains the signal size \(W \), only if

\[
\exists q \in \mathbb{N}, \ W = w + s \cdot q.
\]
It has been observed that transposed convolutions may create some grid-structure artifacts, since generated pixels are not all covered similarly.

For instance with a 4×4 kernel and stride 3
An alternative is to use an analytic up-scaling, implemented in the PyTorch modules \texttt{nn.Upsample}.

```python
>>> x = torch.tensor([[[ 1., 2.], [ 3., 4.]]])
>>> b = nn.Upsample(scale_factor = 3, mode = 'bilinear')
>>> b(x)
tensor([[[ 1.0000, 1.0000, 1.3333, 1.6667, 2.0000, 2.0000],
          [ 1.0000, 1.0000, 1.3333, 1.6667, 2.0000, 2.0000],
          [ 1.6667, 1.6667, 2.0000, 2.3333, 2.6667, 2.6667],
          [ 2.3333, 2.3333, 2.6667, 3.0000, 3.3333, 3.3333],
          [ 3.0000, 3.0000, 3.3333, 3.6667, 4.0000, 4.0000],
          [ 3.0000, 3.0000, 3.3333, 3.6667, 4.0000, 4.0000]]])
```
An alternative is to use an analytic up-scaling, implemented in the PyTorch modules `nn.Upsample`.

```python
>>> x = torch.tensor([[[ 1., 2. ], [ 3., 4. ]]]])
>>> b = nn.Upsample(scale_factor = 3, mode = 'bilinear')
>>> b(x)
tensor([[[ 1.0000, 1.0000, 1.3333, 1.6667, 2.0000, 2.0000],
         [ 1.0000, 1.0000, 1.3333, 1.6667, 2.0000, 2.0000],
         [ 1.6667, 1.6667, 2.0000, 2.3333, 2.6667, 2.6667],
         [ 2.3333, 2.3333, 2.6667, 3.0000, 3.3333, 3.3333],
         [ 3.0000, 3.0000, 3.3333, 3.6667, 4.0000, 4.0000],
         [ 3.0000, 3.0000, 3.3333, 3.6667, 4.0000, 4.0000]]])

>>> u = nn.Upsample(scale_factor = 3, mode = 'nearest')
>>> u(x)
tensor([[[ 1., 1., 1., 2., 2., 2.],
         [ 1., 1., 1., 2., 2., 2.],
         [ 1., 1., 1., 2., 2., 2.],
         [ 3., 3., 3., 4., 4., 4.],
         [ 3., 3., 3., 4., 4., 4.],
         [ 3., 3., 3., 4., 4., 4.]]])
```
Such module is usually combined with a convolution to learn local corrections to undesirable artifacts of the up-scaling.

In practice, a transposed convolution such as

```python
nn.ConvTranspose2d(nic, noc,
                   kernel_size = 3, stride = 2,
                   padding = 1, output_padding = 1),
```

can be replaced by

```python
nn.Upsample(scale_factor = 2, mode = 'bilinear')
nn.Conv2d(nic, noc, kernel_size = 3, padding = 1)
```
The end