AMMI – Introduction to Deep Learning

4.4. Convolutions

François Fleuret
https://fleuret.org/ammi-2018/
Mon Oct 15 10:59:41 CAT 2018
If they were handled as normal “unstructured” vectors, large-dimension signals such as sound samples or images would require models of intractable size.

For instance a linear layer taking a 256×256 RGB image as input, and producing an image of same size would require

$$(256 \times 256 \times 3)^2 \approx 3.87e+10$$

parameters, with the corresponding memory footprint ($\approx 150\text{Gb}!$), and excess of capacity.
Moreover, this requirement is inconsistent with the intuition that such large signals have some “invariance in translation”. A representation meaningful at a certain location can / should be used everywhere.
Moreover, this requirement is inconsistent with the intuition that such large signals have some “invariance in translation”. A representation meaningful at a certain location can / should be used everywhere.

A convolution layer embodies this idea. It applies the same linear transformation locally, everywhere, and preserves the signal structure.
Input

\[
\begin{array}{cccccccc}
1 & 4 & -1 & 0 & 2 & -2 & 1 & 3 & 3 & 1 \\
\end{array}
\]
\[W - w + 1 \]
The image shows an illustration of convolutional operations in a neural network. The input is a one-dimensional array with the values 1, 4, -1, 0, 2, -2, 1, 3, 3, 1. A kernel (W) with the values 1, 2, 0, -1 is applied to the input. The output is calculated as the dot product of the kernel and the input, shifting the kernel by one position at each step. The output is shown as 9 and 0.

The formula for the output is given as $W - w + 1$, where W is the size of the input and w is the size of the kernel.
\[W - w + 1 \]

Input

\[
\begin{array}{cccccccc}
1 & 4 & -1 & 0 & 2 & -2 & 1 & 3 & 3 & 1
\end{array}
\]

Kernel

\[
\begin{array}{cccc}
1 & 2 & 0 & -1
\end{array}
\]

Output

\[
\begin{array}{cccccccc}
9 & 0 & 1 & 3 & -5 & -3
\end{array}
\]
\[\mathbf{W} - \mathbf{w} + 1 \]

Input:

\[
\begin{bmatrix}
1 & 4 & -1 & 0 & 2 & -2 & 1 & 3 & 3 & 1
\end{bmatrix}
\]

Output:

\[
\begin{bmatrix}
9 & 0 & 1 & 3 & -5 & -3 & 6
\end{bmatrix}
\]
Input

\[
\begin{array}{cccccccc}
1 & 4 & -1 & 0 & 2 & -2 & 1 & 3 \\
\end{array}
\]

\[W - w + 1\]

Kernel

\[
\begin{array}{cccc}
1 & 2 & 0 & -1 \\
\end{array}
\]

Output

\[
\begin{array}{cccccccc}
9 & 0 & 1 & 3 & -5 & -3 & 6 \\
\end{array}
\]
Formally, in 1d, given

\[x = (x_1, \ldots, x_W) \]

and a “convolution kernel” (or “filter”) of width \(w \)

\[u = (u_1, \ldots, u_w) \]
Formally, in 1d, given

\[x = (x_1, \ldots, x_W) \]

and a “convolution kernel” (or “filter”) of width \(w \)

\[u = (u_1, \ldots, u_w) \]

the convolution \(x \ast u \) is a vector of size \(W - w + 1 \), with

\[
(x \ast u)_i = \sum_{j=1}^{w} x_{i-1+j} \cdot u_j
\]

\[
= (x_i, \ldots, x_{i+w-1}) \cdot u
\]

for instance

\[
(1, 2, 3, 4) \ast (3, 2) = (3 + 4, 6 + 6, 9 + 8) = (7, 12, 17).
\]
Formally, in 1d, given
\[x = (x_1, \ldots, x_W) \]
and a “convolution kernel” (or “filter”) of width \(w \)
\[u = (u_1, \ldots, u_w) \]
the convolution \(x \odot u \) is a vector of size \(W - w + 1 \), with
\[
(x \odot u)_i = \sum_{j=1}^{w} x_{i-1+j} u_j
\]
\[
= (x_i, \ldots, x_{i+w-1}) \cdot u
\]
for instance
\[
(1, 2, 3, 4) \odot (3, 2) = (3 + 4, 6 + 6, 9 + 8) = (7, 12, 17).
\]

This differs from the usual convolution since the kernel and the signal are both visited in increasing index order.
Convolution can implement in particular differential operators, e.g.

\[(0, 0, 0, 0, 1, 2, 3, 4, 4, 4) \ast (−1, 1) = (0, 0, 0, 1, 1, 1, 1, 0, 0, 0).\]
Convolution can implement in particular differential operators, e.g.

\[(0, 0, 0, 0, 1, 2, 3, 4, 4, 4) \ast (-1, 1) = (0, 0, 0, 1, 1, 1, 0, 0, 0).\]
Convolution can implement in particular differential operators, e.g.

\[(0, 0, 0, 0, 1, 2, 3, 4, 4, 4) \ast (-1, 1) = (0, 0, 0, 1, 1, 1, 0, 0, 0)\].

or crude “template matcher”, e.g.
Convolution can implement in particular differential operators, \textit{e.g.}

\[(0, 0, 0, 0, 1, 2, 3, 4, 4, 4) \ast (-1, 1) = (0, 0, 0, 1, 1, 1, 0, 0, 0).\]

or crude "template matcher", \textit{e.g.}

Both of these computation examples are indeed "invariant by translation".
It generalizes naturally to a multi-dimensional input, although specification can become complicated.
It generalizes naturally to a multi-dimensional input, although specification can become complicated.

Its most usual form for “convolutional networks” processes a 3d tensor as input (i.e. a multi-channel 2d signal) to output a 2d tensor. The kernel is not swiped across channels, just across rows and columns.

In this case, if the input tensor is of size $C \times H \times W$, and the kernel is $C \times h \times w$, the output is $(H - h + 1) \times (W - w + 1)$.
It generalizes naturally to a multi-dimensional input, although specification can become complicated.

Its most usual form for “convolutional networks” processes a 3d tensor as input (i.e. a multi-channel 2d signal) to output a 2d tensor. The kernel is not swiped across channels, just across rows and columns.

In this case, if the input tensor is of size $C \times H \times W$, and the kernel is $C \times h \times w$, the output is $(H - h + 1) \times (W - w + 1)$.

We say “2d signal” even though it has C channels, since it is a feature vector indexed by a 2d location without structure on the feature indexes.
It generalizes naturally to a multi-dimensional input, although specification can become complicated.

Its most usual form for “convolutional networks” processes a 3d tensor as input (i.e. a multi-channel 2d signal) to output a 2d tensor. The kernel is not swiped across channels, just across rows and columns.

In this case, if the input tensor is of size $C \times H \times W$, and the kernel is $C \times h \times w$, the output is $(H - h + 1) \times (W - w + 1)$.

⚠️ We say “2d signal” even though it has C channels, since it is a feature vector indexed by a 2d location without structure on the feature indexes.

In a standard convolution layer, D such convolutions are combined to generate a $D \times (H - h + 1) \times (W - w + 1)$ output.
Kernel

\[Kernels \]

\[D - h + 1 \]

\[W - w + 1 \]

\[1 \]
Kernel

Input

$D - h + 1$

$W - w + 1$

1

H

W

C

h

w

C

François Fleuret

AMMI – Introduction to Deep Learning / 4.4. Convolutions
\[D - h + 1 \]

\[W - w + 1 \]

\[C \]
The convolution operation involves sliding a kernel across the input data. The kernel, with dimensions $h \times w \times C$, is applied to the input data, which has dimensions $H \times W \times C$. The output dimension is given by $D \times H \times W - h + 1 \times w + 1 \times 1$. The convolution process combines the kernel with the input data to produce the output.
\(D \times H \times W \) \(h \times w \) \(C \)
Kernels $D \times H \times W + 1 \times 1 \times 1$

Françoise Fleuret
AMMI – Introduction to Deep Learning / 4.4. Convolutions
Kernel K is a $D \times H \times W \times C$ tensor.

Input I is a $H \times W \times C$ tensor.

Output O is a $H' \times W' \times C'$ tensor, where $H' = H - h + 1$ and $W' = W - w + 1$.

The convolution operation can be defined as follows:

$$ O_{h,w} = \sum_{i} \sum_{j} \sum_{k} I_{i+j-k} \cdot K_{i,j,k} $$
Kernels

\[D - h + 1 \times W - w + 1 = 1\]
The diagram illustrates how convolutions work in deep learning. It shows an input layer with dimensions $H \times W \times C$, a kernel with dimensions $h \times w \times C$, and an output layer with dimensions $(H-h+1) \times (W-w+1) \times C$. The process involves sliding the kernel across the input, performing a dot product at each location, and producing an output.
The diagram illustrates the concept of convolutions in deep learning. The input is represented by a 3D tensor with dimensions $D \times H \times W \times C$, where D, H, W, and C denote depth, height, width, and channels, respectively. The kernel is a smaller 3D tensor with dimensions $D \times h \times w \times C$, where h and w are the height and width of the kernel, and C is the number of channels. The output is a 3D tensor with dimensions $D \times H' \times W' \times C'$, where H' and W' are the new height and width after convolution, and C' is the number of output channels. The kernel slides over the input, performing element-wise multiplications and summations to produce the output.
\[
D - h + 1 \quad W - w + 1
\]

Input

Output

Kernel

\[
\frac{H}{h} \quad \frac{W}{w}
\]

\[
\frac{C}{C}
\]
Kernel

\[W - w + 1 \]

\[H - h + 1 \]
\[\text{Kernel: } (H - h + 1) \times (W - w + 1) \times C \times D \]

Input: \(W \times H \times C \)

Kernels: \(W \times h \times w \times C \)

Output: \(W - w + 1 \times H - h + 1 \times C \times D \)
Note that a convolution preserves the signal support structure.

A 1d signal is converted into a 1d signal, a 2d signal into a 2d, and neighboring parts of the input signal influence neighboring parts of the output signal.
Note that a convolution preserves the signal support structure.

A 1d signal is converted into a 1d signal, a 2d signal into a 2d, and neighboring parts of the input signal influence neighboring parts of the output signal.

A 3d convolution can be used if the channel index has some metric meaning, such as time for a series of grayscale video frames. Otherwise swiping across channels makes no sense.
We usually refer to one of the channels generated by a convolution layer as an activation map.

The sub-area of an input map that influences a component of the output as the receptive field of the latter.
We usually refer to one of the channels generated by a convolution layer as an **activation map**.

The sub-area of an input map that influences a component of the output as the **receptive field** of the latter.

In the context of convolutional networks, a standard linear layer is called a **fully connected layer** since every input influences every output.
torch.nn.functional.conv2d(input, weight, bias=None,
 stride=1, padding=0, dilation=1, groups=1)

Implements a 2d convolution, where weight contains the kernels, and is
$D \times C \times h \times w$, bias is of dimension D, input is of dimension

$$N \times C \times H \times W$$

and the result is of dimension

$$N \times D \times (H - h + 1) \times (W - w + 1).$$
torch.nn.functional.conv2d(input, weight, bias=None,
 stride=1, padding=0, dilation=1, groups=1)

Implements a 2d convolution, where \texttt{weight} contains the kernels, and is \(D \times C \times h \times w\), \texttt{bias} is of dimension \(D\), \texttt{input} is of dimension \(N \times C \times H \times W\)

and the result is of dimension

\[N \times D \times (H - h + 1) \times (W - w + 1).\]

```python
>>> weight = torch.empty(5, 4, 2, 3).normal_()
>>> bias = torch.empty(5).normal_()
>>> input = torch.empty(117, 4, 10, 3).normal_()
>>> output = torch.nn.functional.conv2d(input, weight, bias)
>>> output.size()
torch.Size([117, 5, 9, 1])
```
torch.nn.functional.conv2d(input, weight, bias=None,
 stride=1, padding=0, dilation=1, groups=1)

Implements a 2d convolution, where weight contains the kernels, and is
\(D \times C \times h \times w \), bias is of dimension \(D \), input is of dimension
\(N \times C \times H \times W \)

and the result is of dimension
\(N \times D \times (H - h + 1) \times (W - w + 1) \).

```python
>>> weight = torch.empty(5, 4, 2, 3).normal_()
>>> bias = torch.empty(5).normal_()
>>> input = torch.empty(117, 4, 10, 3).normal_()
>>> output = torch.nn.functional.conv2d(input, weight, bias)
>>> output.size()
torch.Size([117, 5, 9, 1])
```

Similar functions implement 1d and 3d convolutions.
x = mnist_train.train_data[12].float().view(1, 1, 28, 28)

weight = torch.empty(5, 1, 3, 3)

weight[0, 0] = torch.tensor([[0., 0., 0.],
 [0., 1., 0.],
 [0., 0., 0.]])

weight[1, 0] = torch.tensor([[1., 1., 1.],
 [1., 1., 1.],
 [1., 1., 1.]])

weight[2, 0] = torch.tensor([[-1., 0., 1.],
 [-1., 0., 1.],
 [-1., 0., 1.]])

weight[3, 0] = torch.tensor([[-1., -1., -1.],
 [0., 0., 0.],
 [1., 1., 1.]])

weight[4, 0] = torch.tensor([[0., -1., 0.],
 [-1., 4., -1.],
 [0., -1., 0.]])

y = torch.nn.functional.conv2d(x, weight)
\[3 \ast 3 = 3 \]
\[3 \ast 3 = 3 \]
class torch.nn.Conv2d(in_channels, out_channels,
 kernel_size, stride=1, padding=0, dilation=1,
 groups=1, bias=True)

Wraps the convolution into a Module, with the kernels and biases as Parameter properly randomized at creation.

The kernel size is either a pair \((h, w)\) or a single value \(k\) interpreted as \((k, k)\).
class torch.nn.Conv2d(in_channels, out_channels,
 kernel_size, stride=1, padding=0, dilation=1,
 groups=1, bias=True)

Wraps the convolution into a Module, with the kernels and biases as Parameter
properly randomized at creation.

The kernel size is either a pair \((h, w)\) or a single value \(k\) interpreted as \((k, k)\).

```python
>>> f = nn.Conv2d(in_channels = 4, out_channels = 5, kernel_size = (2, 3))
>>> for n, p in f.named_parameters(): print(n, p.size())
...
weight torch.Size([5, 4, 2, 3])
bias torch.Size([5])
>>> x = torch.empty(117, 4, 10, 3).normal_()
>>> y = f(x)
>>> y.size()
torch.Size([117, 5, 9, 1])
```
Padding and stride
Convolutions have two additional standard parameters:

- The **padding** specifies the size of a zeroed frame added around the input,
- the **stride** specifies a step size when moving the kernel across the signal.
Here with $C \times 3 \times 5$ as input
Here with $C \times 3 \times 5$ as input, a padding of $(2, 1)$
Here with $C \times 3 \times 5$ as input, a padding of $(2, 1)$, a stride of $(2, 2)$
Here with $C \times 3 \times 5$ as input, a padding of $(2, 1)$, a stride of $(2, 2)$, and a kernel of size $C \times 3 \times 3$
Here with $C \times 3 \times 5$ as input, a padding of $(2, 1)$, a stride of $(2, 2)$, and a kernel of size $C \times 3 \times 3$.
Here with $C \times 3 \times 5$ as input, a padding of $(2,1)$, a stride of $(2,2)$, and a kernel of size $C \times 3 \times 3$.
Here with $C \times 3 \times 5$ as input, a padding of $(2, 1)$, a stride of $(2, 2)$, and a kernel of size $C \times 3 \times 3$
Here with $C \times 3 \times 5$ as input, a padding of $(2, 1)$, a stride of $(2, 2)$, and a kernel of size $C \times 3 \times 3$
Here with $C \times 3 \times 5$ as input, a padding of $(2,1)$, a stride of $(2,2)$, and a kernel of size $C \times 3 \times 3$.
Here with $C \times 3 \times 5$ as input, a padding of $(2, 1)$, a stride of $(2, 2)$, and a kernel of size $C \times 3 \times 3$.
Here with $C \times 3 \times 5$ as input, a padding of $(2, 1)$, a stride of $(2, 2)$, and a kernel of size $C \times 3 \times 3$.
Here with $C \times 3 \times 5$ as input, a padding of $(2,1)$, a stride of $(2,2)$, and a kernel of size $C \times 3 \times 3$, the output is $1 \times 3 \times 3$.
A convolution with a stride greater than 1 may not cover the input map completely, hence may ignore some of the input values.
Dilated convolution
Convolution operations admit one more standard parameter that we have not discussed yet: The dilation, which modulates the expansion of the filter support (Yu and Koltun, 2015).

It is 1 for standard convolutions, but can be greater, in which case the resulting operation can be envisioned as a convolution with a regularly sparsified filter.
Convolution operations admit one more standard parameter that we have not discussed yet: The dilation, which modulates the expansion of the filter support (Yu and Koltun, 2015).

It is 1 for standard convolutions, but can be greater, in which case the resulting operation can be envisioned as a convolution with a regularly sparsified filter.

This notion comes from signal processing, where it is referred to as *algorithme à trous*, hence the term sometime used of “convolution à trous”.
Dilation = 1

Input

Output
Dilation = 1
Dilation = 1
Dilation = 1
Dilation = 1

Input

Output
Dilation = 1
Dilation = 1
Dilation = 2

Input

Output
Dilation = 2

Input

Output
Dilation = 2

Input

Output
Dilation = 2
Dilation = 2

Input

Output
A convolution with a 1d kernel of size k and dilation d can be interpreted as a convolution with a filter of size $1 + (k - 1)d$ with only k non-zero coefficients.

For with $k = 3$ and $d = 4$, the difference between the input map size and the output map size is $1 + (3 - 1)4 - 1 = 8$.

```python
>>> x = torch.empty(1, 1, 20, 30).normal_()
>>> l = nn.Conv2d(1, 1, kernel_size = 3, dilation = 4)
>>> l(x).size()
torch.Size([1, 1, 12, 22])
```
Having a dilation greater than one increases the units’ receptive field size without increasing the number of parameters.

Convolutions with stride or dilation strictly greater than one reduce the activation map size, for instance to make a final classification decision.
Having a dilation greater than one increases the units’ receptive field size without increasing the number of parameters.

Convolutions with stride or dilation strictly greater than one reduce the activation map size, for instance to make a final classification decision.

Such networks have the advantage of simplicity:

- non-linear operations are only in the activation function,
- joint operations that combine multiple activations to produce one are only in linear layers.
The end