AMMI – Introduction to Deep Learning

3.6. Back-propagation

François Fleuret
https://fleuret.org/ammi-2018/
Fri Sep 14 14:14:41 CAT 2018
We want to train an MLP by minimizing a loss over the training set

\[\mathcal{L}(w, b) = \sum_n \ell(f(x_n; w, b), y_n). \]
We want to train an MLP by minimizing a loss over the training set

\[\mathcal{L}(w, b) = \sum_n \ell(f(x_n; w, b), y_n). \]

To use gradient descent, we need the expression of the gradient of the loss with respect to the parameters:

\[\frac{\partial \mathcal{L}}{\partial w_{i,j}^{(l)}} \quad \text{and} \quad \frac{\partial \mathcal{L}}{\partial b_i^{(l)}}. \]
We want to train an MLP by minimizing a loss over the training set

\[\mathcal{L}(w, b) = \sum_n \ell(f(x_n; w, b), y_n). \]

To use gradient descent, we need the expression of the gradient of the loss with respect to the parameters:

\[\frac{\partial \mathcal{L}}{\partial w_{i,j}^{(l)}} \quad \text{and} \quad \frac{\partial \mathcal{L}}{\partial b_i^{(l)}}. \]

So, with \(\ell_n = \ell(f(x_n; w, b), y_n) \), what we need is

\[\frac{\partial \ell_n}{\partial w_{i,j}^{(l)}} \quad \text{and} \quad \frac{\partial \ell_n}{\partial b_i^{(l)}}. \]
For clarity, we consider a single training sample x, and introduce $s^{(1)}, \ldots, s^{(L)}$ as the summations before activation functions.

$$x^{(0)} = x \xrightarrow{w^{(1)}, b^{(1)}} s^{(1)} \xrightarrow{\sigma} x^{(1)} \xrightarrow{w^{(2)}, b^{(2)}} s^{(2)} \xrightarrow{\sigma} \ldots \xrightarrow{w^{(L)}, b^{(L)}} s^{(L)} \xrightarrow{\sigma} x^{(L)} = f(x; w, b).$$
For clarity, we consider a single training sample x, and introduce $s^{(1)}, \ldots, s^{(L)}$ as the summations before activation functions.

\[
x^{(0)} = x \xrightarrow{w^{(1)}, b^{(1)}} s^{(1)} \xrightarrow{\sigma} x^{(1)} \xrightarrow{w^{(2)}, b^{(2)}} s^{(2)} \xrightarrow{\sigma} \ldots \xrightarrow{w^{(L)}, b^{(L)}} s^{(L)} \xrightarrow{\sigma} x^{(L)} = f(x; w, b).
\]

Formally we set $x^{(0)} = x$,

\[
\forall l = 1, \ldots, L, \quad \begin{cases}
 s^{(l)} = w^{(l)} x^{(l-1)} + b^{(l)} \\
 x^{(l)} = \sigma(s^{(l)})
\end{cases},
\]

and we set the output of the network as $f(x; w, b) = x^{(L)}$.
For clarity, we consider a single training sample x, and introduce $s^{(1)}, \ldots, s^{(L)}$ as the summations before activation functions.

$$x^{(0)} = x \xrightarrow{w^{(1)}, b^{(1)}} s^{(1)} \xrightarrow{\sigma} x^{(1)} \xrightarrow{w^{(2)}, b^{(2)}} s^{(2)} \xrightarrow{\sigma} \ldots \xrightarrow{w^{(L)}, b^{(L)}} s^{(L)} \xrightarrow{\sigma} x^{(L)} = f(x; w, b).$$

Formally we set $x^{(0)} = x$,

$$\forall l = 1, \ldots, L, \left\{ \begin{array}{l} s^{(l)} = w^{(l)} x^{(l-1)} + b^{(l)} \\ x^{(l)} = \sigma(s^{(l)}) \end{array} \right.,$$

and we set the output of the network as $f(x; w, b) = x^{(L)}$.

This is the forward pass.
The core principle of the back-propagation algorithm is the “chain rule” from differential calculus:

\[(g \circ f)' = (g' \circ f)f'\]

which generalizes to longer compositions and higher dimensions

\[J_{f_N \circ f_{N-1} \circ \cdots \circ f_1}(x) = \prod_{n=1}^{N} J_{f_n}(f_{n-1} \circ \cdots \circ f_1(x)),\]

where \(J_f(x)\) is the Jacobian of \(f\) at \(x\), that is the matrix of the linear approximation of \(f\) in the neighborhood of \(x\).
The core principle of the back-propagation algorithm is the “chain rule” from differential calculus:
\[(g \circ f)' = (g' \circ f)f'\]
which generalizes to longer compositions and higher dimensions
\[J_{f_N \circ f_{N-1} \circ \cdots \circ f_1}(x) = \prod_{n=1}^{N} J_{f_n}(f_{n-1} \circ \cdots \circ f_1(x)),\]
where \(J_f(x)\) is the Jacobian of \(f\) at \(x\), that is the matrix of the linear approximation of \(f\) in the neighborhood of \(x\).

The linear approximation of a composition of mappings is the product of their individual linear approximations.
The core principle of the back-propagation algorithm is the “chain rule” from differential calculus:

$$(g \circ f)' = (g' \circ f)f'$$

which generalizes to longer compositions and higher dimensions

$$J_{f_N \circ f_{N-1} \circ \cdots \circ f_1}(x) = \prod_{n=1}^{N} J_{f_n}(f_{n-1} \circ \cdots \circ f_1(x)),$$

where $J_f(x)$ is the Jacobian of f at x, that is the matrix of the linear approximation of f in the neighborhood of x.

The linear approximation of a composition of mappings is the product of their individual linear approximations.

What follows is exactly this principle applied to a MLP.
\[\ldots \; \sigma \rightarrow x^{(l-1)} \; \xrightarrow{w^{(l)}, b^{(l)}} \; s^{(l)} \; \sigma \rightarrow x^{(l)} \; \xrightarrow{w^{(l+1)}, b^{(l+1)}} \; s^{(l+1)} \; \sigma \rightarrow \ldots \]

We have

\[s^{(l)}_i = \sum_j w^{(l)}_{i,j} x^{(l-1)}_j + b^{(l)}_i, \]
\[\ldots \xrightarrow{\sigma} x^{(l-1)} \xrightarrow{w^{(l)}, b^{(l)}} s^{(l)} \xrightarrow{\sigma} x^{(l)} \xrightarrow{w^{(l+1)}, b^{(l+1)}} s^{(l+1)} \xrightarrow{\sigma} \ldots \]

We have

\[s_i^{(l)} = \sum_j w_{i,j} x_j^{(l-1)} + b_i^{(l)} , \]

so \(w_{i,j} \) influences \(\ell \) only through \(s_i^{(l)} \), and we get

\[\frac{\partial \ell}{\partial w_{i,j}} \]
We have

\[s^{(l)}_i = \sum_j w^{(l)}_{i,j} x^{(l-1)}_j + b^{(l)}_i, \]

so \(w^{(l)}_{i,j} \) influences \(\ell \) only through \(s^{(l)}_i \), and we get

\[\frac{\partial \ell}{\partial w^{(l)}_{i,j}} = \frac{\partial \ell}{\partial s^{(l)}_i} \frac{\partial s^{(l)}_i}{\partial w^{(l)}_{i,j}} \]
\[\ldots \sigma \rightarrow x^{(l-1)} \xrightarrow{w^{(l)}, b^{(l)}} s^{(l)} \xrightarrow{\sigma} x^{(l)} \xrightarrow{w^{(l+1)}, b^{(l+1)}} s^{(l+1)} \xrightarrow{\sigma} \ldots \]

We have

\[s^{(l)}_i = \sum_j w^{(l)}_{i,j} x^{(l-1)}_j + b^{(l)}_i , \]

so \(w^{(l)}_{i,j} \) influences \(\ell \) only through \(s^{(l)}_i \), and we get

\[\frac{\partial \ell}{\partial w^{(l)}_{i,j}} = \frac{\partial \ell}{\partial s^{(l)}_i} \frac{\partial s^{(l)}_i}{\partial w^{(l)}_{i,j}} = \frac{\partial \ell}{\partial s^{(l)}_i} x^{(l-1)}_j , \]
\[
\begin{align*}
&\ldots \sigma \xrightarrow{} x^{(l-1)} \xrightarrow{w^{(l)},b^{(l)}} s^{(l)} \sigma \xrightarrow{} x^{(l)} \xrightarrow{w^{(l+1)},b^{(l+1)}} s^{(l+1)} \sigma \xrightarrow{} \ldots \\
\text{We have} & \\
&s_i^{(l)} = \sum_j w_{i,j} x_j^{(l-1)} + b_i^{(l)}, \\
\text{so } w_{i,j}^{(l)} \text{ influences } \ell \text{ only through } s_i^{(l)}, \text{ and we get} & \\
&\frac{\partial \ell}{\partial w_{i,j}^{(l)}} = \frac{\partial \ell}{\partial s_i^{(l)}} \frac{\partial s_i^{(l)}}{\partial w_{i,j}^{(l)}} = \frac{\partial \ell}{\partial s_i^{(l)}} x_j^{(l-1)}, \\
\text{and similarly} & \\
&\frac{\partial \ell}{\partial b_i^{(l)}} = \frac{\partial \ell}{\partial s_i^{(l)}}.
\end{align*}
\]
\[\ldots \sigma \rightarrow x^{(l-1)} \xrightarrow{w^{(l)}, b^{(l)}} s^{(l)} \sigma \rightarrow x^{(l)} \xrightarrow{w^{(l+1)}, b^{(l+1)}} s^{(l+1)} \sigma \rightarrow \ldots \]

We have

\[s_i^{(l)} = \sum_j w_{i,j} x_j^{(l-1)} + b_i^{(l)}, \]

so \(w_{i,j} \) influences \(\ell \) only through \(s_i^{(l)} \), and we get

\[\frac{\partial \ell}{\partial w_{i,j}^{(l)}} = \frac{\partial \ell}{\partial s_i^{(l)}} \frac{\partial s_i^{(l)}}{\partial w_{i,j}^{(l)}} = \frac{\partial \ell}{\partial s_i^{(l)}} x_j^{(l-1)}, \]

and similarly

\[\frac{\partial \ell}{\partial b_i^{(l)}} = \frac{\partial \ell}{\partial s_i^{(l)}}. \]

Since we know \(x_j^{(l-1)} \) from the forward pass, we only need \(\frac{\partial \ell}{\partial s_i^{(l)}} \).
We have

\[x_i^{(l)} = \sigma(s_i^{(l)}) \],
We have

\[x_i^{(l)} = \sigma(s_i^{(l)}) , \]

and since \(s_i^{(l)} \) influences \(\ell \) only through \(x_i^{(l)} \), the chain rule gives

\[\frac{\partial \ell}{\partial s_i^{(l)}} \]
\[\ldots \xrightarrow{\sigma} x^{(l-1)} \xrightarrow{w^{(l)}, b^{(l)}} s^{(l)} \xrightarrow{\sigma} x^{(l)} \xrightarrow{w^{(l+1)}, b^{(l+1)}} s^{(l+1)} \xrightarrow{\sigma} \ldots \]

We have

\[x_i^{(l)} = \sigma(s_i^{(l)}) , \]

and since \(s_i^{(l)} \) influences \(\ell \) only through \(x_i^{(l)} \), the chain rule gives

\[\frac{\partial \ell}{\partial s_i^{(l)}} = \frac{\partial \ell}{\partial x_i^{(l)}} \frac{\partial x_i^{(l)}}{\partial s_i^{(l)}} \]
We have

\[x_i^{(l)} = \sigma(s_i^{(l)}) , \]

and since \(s_i^{(l)} \) influences \(\ell \) only through \(x_i^{(l)} \), the chain rule gives

\[
\frac{\partial \ell}{\partial s_i^{(l)}} = \frac{\partial \ell}{\partial x_i^{(l)}} \frac{\partial x_i^{(l)}}{\partial s_i^{(l)}} = \frac{\partial \ell}{\partial x_i^{(l)}} \sigma'(s_i^{(l)}) ,
\]
\[\ldots \sigma \rightarrow x^{(l-1)} \xrightarrow{w^{(l)}, b^{(l)}} s^{(l)} \sigma \rightarrow x^{(l)} \xrightarrow{w^{(l+1)}, b^{(l+1)}} s^{(l+1)} \sigma \rightarrow \ldots \]

We have

\[x_i^{(l)} = \sigma(s_i^{(l)}) \]

and since \(s_i^{(l)} \) influences \(\ell \) only through \(x_i^{(l)} \), the chain rule gives

\[
\frac{\partial \ell}{\partial s_i^{(l)}} = \frac{\partial \ell}{\partial x_i^{(l)}} \frac{\partial x_i^{(l)}}{\partial s_i^{(l)}} = \frac{\partial \ell}{\partial x_i^{(l)}} \sigma'(s_i^{(l)})
\]

Since we know \(s_i^{(l)} \) from the forward pass, we only need \(\frac{\partial \ell}{\partial x_i^{(l)}} \).
Finally, we have

\[
\frac{\partial \ell}{\partial x_i^{(L)}} = (\nabla_1 \ell)_i
\]

where $\nabla_1 \ell$ is the gradient of ℓ with respect to its first parameter, that is the predicted value.
\[\ldots \xrightarrow{\sigma} x^{(l-1)} \xrightarrow{w^{(l)}, b^{(l)}} s^{(l)} \xrightarrow{\sigma} x^{(l)} \xrightarrow{w^{(l+1)}, b^{(l+1)}} s^{(l+1)} \xrightarrow{\sigma} \ldots \]

Finally, we have

\[\frac{\partial \ell}{\partial x_i^{(L)}} = (\nabla_1 \ell)_i \]

where \(\nabla_1 \ell \) is the gradient of \(\ell \) with respect to its first parameter, that is the predicted value.

Also, \(\forall l = 1, \ldots, L - 1 \), since

\[s_h^{(l+1)} = \sum_i w_{h,i} x_i^{(l)} + b_{h}^{(l+1)}, \]

and \(x_i^{(l)} \) influences \(\ell \) only through the \(s_h^{(l+1)} \), we have

\[\frac{\partial \ell}{\partial x_i^{(l)}} \]
... \xrightarrow{\sigma} x^{(l-1)} \xrightarrow{w^{(l)}, b^{(l)}} s^{(l)} \xrightarrow{\sigma} x^{(l)} \xrightarrow{w^{(l+1)}, b^{(l+1)}} s^{(l+1)} \xrightarrow{\sigma} ...

Finally, we have

\[\frac{\partial \ell}{\partial x_i^{(L)}} = (\nabla_1 \ell)_i \]

where \(\nabla_1 \ell \) is the gradient of \(\ell \) with respect to its first parameter, that is the predicted value.

Also, \(\forall l = 1, \ldots, L - 1 \), since

\[s_h^{(l+1)} = \sum_i w_{h,i}^{l+1} x_i^{(l)} + b_h^{l+1}, \]

and \(x_i^{(l)} \) influences \(\ell \) only through the \(s_h^{(l+1)} \), we have

\[\frac{\partial \ell}{\partial x_i^{(l)}} = \sum_h \frac{\partial \ell}{\partial s_h^{(l+1)}} \frac{\partial s_h^{(l+1)}}{\partial x_i^{(l)}} \]
Finally, we have

\[
\frac{\partial \ell}{\partial x_i^{(L)}} = (\nabla_1 \ell)_i
\]

where \(\nabla_1 \ell \) is the gradient of \(\ell \) with respect to its first parameter, that is the predicted value.

Also, \(\forall l = 1, \ldots, L - 1 \), since

\[
s_h^{(l+1)} = \sum_i w_{h,i} x_i^{(l)} + b_{h}^{l+1},
\]

and \(x_i^{(l)} \) influences \(\ell \) only through the \(s_h^{(l+1)} \), we have

\[
\frac{\partial \ell}{\partial x_i^{(l)}} = \sum_h \frac{\partial \ell}{\partial s_h^{(l+1)}} \frac{\partial s_h^{(l+1)}}{\partial x_i^{(l)}} = \sum_h \frac{\partial \ell}{\partial s_h^{(l+1)}} w_{h,i}^{l+1}.
\]
To write all this in tensorial form, if $\psi : \mathbb{R}^N \rightarrow \mathbb{R}^M$, we will use the standard Jacobian notation

$$\left[\frac{\partial \psi}{\partial x} \right] = \left(\begin{array}{ccc} \frac{\partial \psi_1}{\partial x_1} & \cdots & \frac{\partial \psi_1}{\partial x_N} \\ \vdots & \ddots & \vdots \\ \frac{\partial \psi_M}{\partial x_1} & \cdots & \frac{\partial \psi_M}{\partial x_N} \end{array} \right),$$

and if $\psi : \mathbb{R}^{N \times M} \rightarrow \mathbb{R}$, we will use the compact notation, also tensorial

$$\left[\frac{\partial \psi}{\partial w} \right] = \left(\begin{array}{ccc} \frac{\partial \psi}{\partial w_{1,1}} & \cdots & \frac{\partial \psi}{\partial w_{1,M}} \\ \vdots & \ddots & \vdots \\ \frac{\partial \psi}{\partial w_{N,1}} & \cdots & \frac{\partial \psi}{\partial w_{N,M}} \end{array} \right).$$
To write all this in tensorial form, if $\psi : \mathbb{R}^N \rightarrow \mathbb{R}^M$, we will use the standard Jacobian notation

$$
\left[\frac{\partial \psi}{\partial x} \right] = \begin{pmatrix}
\frac{\partial \psi_1}{\partial x_1} & \cdots & \frac{\partial \psi_1}{\partial x_N} \\
\vdots & \ddots & \vdots \\
\frac{\partial \psi_M}{\partial x_1} & \cdots & \frac{\partial \psi_M}{\partial x_N}
\end{pmatrix},
$$

and if $\psi : \mathbb{R}^{N \times M} \rightarrow \mathbb{R}$, we will use the compact notation, also tensorial

$$
\left[\frac{\partial \psi}{\partial w} \right] = \begin{pmatrix}
\frac{\partial \psi}{\partial w_{1,1}} & \cdots & \frac{\partial \psi}{\partial w_{1,M}} \\
\vdots & \ddots & \vdots \\
\frac{\partial \psi}{\partial w_{N,1}} & \cdots & \frac{\partial \psi}{\partial w_{N,M}}
\end{pmatrix}.
$$

A standard notation (that we do not use here) is

$$
\left[\frac{\partial \ell}{\partial x^{(l)}} \right] = \nabla_{x^{(l)}} \ell \quad \left[\frac{\partial \ell}{\partial s^{(l)}} \right] = \nabla_{s^{(l)}} \ell \quad \left[\frac{\partial \ell}{\partial b^{(l)}} \right] = \nabla_{b^{(l)}} \ell \quad \left[\frac{\partial \ell}{\partial w^{(l)}} \right] = \nabla_{w^{(l)}} \ell.
$$
\[(l−1) \times (l) + (l) \times (l−1) \sigma \cdot T = x(l) \]
\[
\begin{aligned}
&\frac{\partial}{\partial x(l-1)} \left[\sum \left(\frac{\partial l}{\partial w(l)} \right) \right] \\
&\frac{\partial}{\partial b(l)} \\
&\sigma \\
&x(l)
\end{aligned}
\]
\[
\frac{\partial \ell}{\partial s_i^{(l)}} = \frac{\partial \ell}{\partial x_i^{(l)}} \sigma' \left(s_i^{(l)} \right)
\]
\[
\frac{\partial \ell}{\partial x_j^{(l-1)}} = \sum_i w_{i,j}^{(l)} \frac{\partial \ell}{\partial s_i^{(l)}}
\]
\[
\frac{\partial \ell}{\partial b_i^{(l)}} = \frac{\partial \ell}{\partial s_i^{(l)}}
\]
\[
\frac{\partial \ell}{\partial w_{i,j}^{(l)}} = \frac{\partial \ell}{\partial s_i^{(l)}} x_{j}^{(l-1)}
\]
\[
\begin{align*}
\frac{\partial \ell}{\partial x(l-1)} &= \sigma' \cdot T \\
\frac{\partial \ell}{\partial w(l)} &= [\ldots] \\
\frac{\partial \ell}{\partial b(l)} &= [\ldots]
\end{align*}
\]
Forward pass

Compute the activations.

\[x^{(0)} = x, \quad \forall l = 1, \ldots, L, \quad \left\{ \begin{array}{l}
 s^{(l)} = w^{(l)} x^{(l-1)} + b^{(l)} \\
 x^{(l)} = \sigma (s^{(l)})
\end{array} \right. \]
Forward pass

Compute the activations.

\[
x^{(0)} = x, \quad \forall l = 1, \ldots, L,
\begin{align*}
 s^{(l)} &= w^{(l)} x^{(l-1)} + b^{(l)} \\
 x^{(l)} &= \sigma(s^{(l)})
\end{align*}
\]

Backward pass

Compute the derivatives of the loss wrt the activations.

\[
\begin{cases}
 \left[\frac{\partial \ell}{\partial x^{(L)}} \right] = \nabla_1 \ell(x^{(L)}) \\
 \text{if } l < L, \left[\frac{\partial \ell}{\partial x^{(l)}} \right] = (w^{(l+1)})^T \left[\frac{\partial \ell}{\partial s^{(l+1)}} \right]
\end{cases}
\]

Compute the derivatives of the loss wrt the parameters.

\[
\begin{align*}
 \left[\frac{\partial \ell}{\partial w^{(l)}} \right] &= \left[\frac{\partial \ell}{\partial s^{(l)}} \right] (x^{(l-1)})^T \\
 \left[\frac{\partial \ell}{\partial b^{(l)}} \right] &= \left[\frac{\partial \ell}{\partial s^{(l)}} \right].
\end{align*}
\]
Forward pass

Compute the activations.

\[x^{(0)} = x, \quad \forall l = 1, \ldots, L, \quad \begin{cases}
 s^{(l)} = w^{(l)} x^{(l-1)} + b^{(l)} \\
 x^{(l)} = \sigma(s^{(l)})
\end{cases} \]

Backward pass

Compute the derivatives of the loss wrt the activations.

\[
\begin{cases}
 \left[\frac{\partial \ell}{\partial x^{(L)}} \right] = \nabla_1 \ell \left(x^{(L)} \right) \\
 \text{if } l < L, \left[\frac{\partial \ell}{\partial x^{(l)}} \right] = (w^{(l+1)})^T \left[\frac{\partial \ell}{\partial s^{(l+1)}} \right]
\end{cases}
\]

Compute the derivatives of the loss wrt the parameters.

\[
\left[\frac{\partial \ell}{\partial w^{(l)}} \right] = \left[\frac{\partial \ell}{\partial s^{(l)}} \right] \left(x^{(l-1)} \right)^T \\
\left[\frac{\partial \ell}{\partial b^{(l)}} \right] = \left[\frac{\partial \ell}{\partial s^{(l)}} \right]
\]

Gradient step

Update the parameters.

\[
w^{(l)} \leftarrow w^{(l)} - \eta \left[\frac{\partial \ell}{\partial w^{(l)}} \right] \\
b^{(l)} \leftarrow b^{(l)} - \eta \left[\frac{\partial \ell}{\partial b^{(l)}} \right]
\]
In spite of its hairy formalization, the backward pass is a simple algorithm: apply the chain rule again and again.

As for the forward pass, it can be expressed in tensorial form. Heavy computation is concentrated in linear operations, and all the non-linearities go into component-wise operations.
Regarding computation, since the costly operation for the forward pass is

$$s^{(l)} = w^{(l)} x^{(l-1)} + b^{(l)}$$

and for the backward

$$\frac{\partial \ell}{\partial x^{(l)}} = \left(w^{(l+1)} \right)^T \frac{\partial \ell}{\partial s^{(l+1)}}$$

and

$$\frac{\partial \ell}{\partial w^{(l)}} = \left[\frac{\partial \ell}{\partial s^{(l)}} \right] \left(x^{(l-1)} \right)^T,$$

the rule of thumb is that the backward pass is twice more expensive than the forward one.
The end