Constructing deep generative architectures requires layers to increase the signal dimension, the contrary of what we have done so far with feed-forward networks.

Generative processes that consist of optimizing the input rely on back-propagation to expend the signal from a low-dimension representation to the high-dimension signal space.

The same can be done in the forward pass with transposed convolution layers whose forward operation corresponds to a convolution layer backward pass.
Consider a 1d convolution with a kernel κ

$$y_i = (x \otimes \kappa)_i$$
$$= \sum_{a} x_{i+a-1} \kappa_a$$
$$= \sum_{a} x_{a} \kappa_{a-i+1}. $$

We get

$$\left[\frac{\partial \ell}{\partial x} \right]_u = \sum_{i} \frac{\partial \ell}{\partial y_i} \frac{\partial y_i}{\partial x_u} = \sum_{i} \frac{\partial \ell}{\partial y_i} \kappa_{u-i+1}. $$

which looks a lot like a standard convolution layer, except that the kernel coefficients are visited in reverse order.

This is actually the standard convolution operator from signal processing. If \ast denotes this operation, we have

$$(x \ast \kappa)_i = \sum_{a} x_{a} \kappa_{i-a+1}. $$

Coming back to the backward pass of the convolution layer, if

$$y = x \otimes \kappa$$

then

$$\left[\frac{\partial \ell}{\partial x} \right] = \left[\frac{\partial \ell}{\partial y} \right] \ast \kappa. $$
In the deep-learning field, since it corresponds to transposing the weight matrix of the equivalent fully-connected layer, it is called a transposed convolution.

\[
\begin{pmatrix}
 \kappa_1 & \kappa_2 & \kappa_3 & 0 & 0 & 0 & 0 \\
 0 & \kappa_1 & \kappa_2 & \kappa_3 & 0 & 0 & 0 \\
 0 & 0 & \kappa_1 & \kappa_2 & \kappa_3 & 0 & 0 \\
 0 & 0 & 0 & \kappa_1 & \kappa_2 & \kappa_3 & 0 \\
 0 & 0 & 0 & 0 & \kappa_1 & \kappa_2 & \kappa_3 \\
\end{pmatrix}^T = \begin{pmatrix}
 \kappa_1 & 0 & 0 & 0 & 0 \\
 \kappa_2 & \kappa_1 & 0 & 0 & 0 \\
 \kappa_3 & \kappa_2 & \kappa_1 & 0 & 0 \\
 0 & \kappa_3 & \kappa_2 & \kappa_1 & 0 \\
 0 & 0 & \kappa_3 & \kappa_2 & \kappa_1 \\
 0 & 0 & 0 & \kappa_3 & \kappa_2 \\
 0 & 0 & 0 & 0 & \kappa_3 \\
\end{pmatrix}
\]

While a convolution can be seen as a series of inner products, a transposed convolution can be seen as a weighted sum of translated kernels.
torch.nn.functional.conv_transpose1d implements the operation we just described. It takes as input a batch of multi-channel samples, and produces a batch of multi-channel samples.

```python
>>> x = torch.tensor([[0., 0., 1., 0., 0., 0., 0.]])
>>> k = torch.tensor([[1., 2., 3.]])
>>> F.conv1d(x, k)
tensor([[ 3., 2., 1., 0., 0.]])

>>> F.conv_transpose1d(x, k)
tensor([[ 0., 0., 1., 2., 3., 0., 0., 0., 0.]])
```
The class `torch.nn.ConvTranspose1d` embeds that operation into a `torch.nn.Module`.

```python
>>> x = torch.tensor([[2., 3., 0., -1.]])
>>> m = nn.ConvTranspose1d(1, 1, kernel_size=3)
>>> m.bias.data.zero_()
>>> m.weight.data.copy_(torch.tensor([[1, 2, -1]]))
>>> y = m(x)
>>> y
```

```python
tensor([[ 2.,  7.,  4., -4., -2.,  1.]])
```

Transposed convolutions also have a dilation parameter that behaves as for convolution and expends the kernel size without increasing the number of parameters by making it sparse.

They also have a stride and padding parameters, however, due to the relation between convolutions and transposed convolutions:

⚠️ While for convolutions stride and padding are defined in the input map, for transposed convolutions these parameters are defined in the output map, and the latter modulates a cropping operation.
The composition of a convolution and a transposed convolution of same parameters keep the signal size [roughly] unchanged.

A convolution with a stride greater than one may ignore parts of the signal. Its composition with the corresponding transposed convolution generates a map of **the size of the observed area**.

For instance, a 1d convolution of kernel size w and stride s composed with the transposed convolution of same parameters maintains the signal size W, only if

$$\exists q \in \mathbb{N}, \ W = w + s \cdot q.$$
It has been observed that transposed convolutions may create some grid-structure artifacts, since generated pixels are not all covered similarly. For instance with a 4×4 kernel and stride 3

An alternative is to use an analytic up-scaling, implemented in the PyTorch modules `nn.Upsample`.

```python
>>> x = torch.tensor([[1., 2.], [3., 4.]])
>>> b = nn.Upsample(scale_factor = 3, mode = 'bilinear')
>>> b(x)
tensor([[ 1.0000, 1.0000, 1.3333, 1.6667, 2.0000, 2.0000],
        [ 1.0000, 1.0000, 1.3333, 1.6667, 2.0000, 2.0000],
        [ 1.6667, 1.6667, 2.0000, 2.3333, 2.6667, 2.6667],
        [ 2.3333, 2.3333, 2.6667, 3.0000, 3.3333, 3.3333],
        [ 3.0000, 3.0000, 3.3333, 3.6667, 4.0000, 4.0000],
        [ 3.0000, 3.0000, 3.3333, 3.6667, 4.0000, 4.0000]])
```

```python
>>> u = nn.Upsample(scale_factor = 3, mode = 'nearest')
>>> u(x)
tensor([[ 1., 1., 1., 2., 2., 2.],
        [ 1., 1., 1., 2., 2., 2.],
        [ 1., 1., 1., 2., 2., 2.],
        [ 3., 3., 3., 4., 4., 4.],
        [ 3., 3., 3., 4., 4., 4.],
        [ 3., 3., 3., 4., 4., 4.]])
```

Such module is usually combined with a convolution to learn local corrections to undesirable artifacts of the up-scaling.

In practice, a transposed convolution such as

```python
nn.ConvTranspose2d(nic, noc,
       kernel_size = 3, stride = 2,
       padding = 1, output_padding = 1),
```

can be replaced by

```python
nn.Upsample(scale_factor = 2, mode = 'bilinear')
nn.Conv2d(nic, noc, kernel_size = 3, padding = 1)
```