Everything we have seen for an MLP

\[x \times w^{(1)} + b^{(1)} \sigma x \times w^{(2)} + b^{(2)} \sigma f(x) \]

can be generalized to an arbitrary “Directed Acyclic Graph” (DAG) of operators
Remember that we use tensorial notation.

If \((a_1, \ldots, a_Q) = \phi(b_1, \ldots, b_R)\), we have

\[
\left[\frac{\partial a}{\partial b} \right] = J_\phi = \begin{pmatrix} \frac{\partial a_1}{\partial b_1} & \cdots & \frac{\partial a_1}{\partial b_R} \\ \vdots & \ddots & \vdots \\ \frac{\partial a_Q}{\partial b_1} & \cdots & \frac{\partial a_Q}{\partial b_R} \end{pmatrix}
\]

This notation does not specify at which point this is computed. It will always be for the forward-pass activations.

Also, if \((a_1, \ldots, a_Q) = \phi(b_1, \ldots, b_R, c_1, \ldots, c_S)\), we use

\[
\left[\frac{\partial a}{\partial c} \right] = J_{\phi|c} = \begin{pmatrix} \frac{\partial a_1}{\partial c_1} & \cdots & \frac{\partial a_1}{\partial c_S} \\ \vdots & \ddots & \vdots \\ \frac{\partial a_Q}{\partial c_1} & \cdots & \frac{\partial a_Q}{\partial c_S} \end{pmatrix}
\]

Forward pass

\[
x(0) = x \\
x(1) = \phi(1)(x(0), w(1)) \\
x(2) = \phi(2)(x(0), x(1); w(2)) \\
f(x) = x(3) = \phi(3)(x(1), x(2), w(1))
\]
Backward pass, derivatives w.r.t activations

\[\begin{bmatrix} \frac{\partial \ell}{\partial x(2)} \\ \frac{\partial \ell}{\partial x(1)} \\ \frac{\partial \ell}{\partial x(0)} \end{bmatrix} = \begin{bmatrix} \frac{\partial x(3)}{\partial x(2)} & \frac{\partial x(3)}{\partial x(1)} & \frac{\partial x(3)}{\partial x(0)} \end{bmatrix} \begin{bmatrix} \frac{\partial \ell}{\partial x(3)} \\ \frac{\partial \ell}{\partial x(2)} \\ \frac{\partial \ell}{\partial x(1)} \end{bmatrix} = J_{\phi(3)} |_{x(2)} \begin{bmatrix} \frac{\partial \ell}{\partial x(3)} \\ \frac{\partial \ell}{\partial x(2)} \\ \frac{\partial \ell}{\partial x(1)} \end{bmatrix} \]

\[\begin{bmatrix} \frac{\partial \ell}{\partial w(1)} \\ \frac{\partial \ell}{\partial w(2)} \end{bmatrix} = \begin{bmatrix} \frac{\partial x(3)}{\partial w(1)} & \frac{\partial x(3)}{\partial w(2)} \end{bmatrix} \begin{bmatrix} \frac{\partial \ell}{\partial x(3)} \\ \frac{\partial \ell}{\partial x(2)} \end{bmatrix} = J_{\phi(3)} |_{w(1)} \begin{bmatrix} \frac{\partial \ell}{\partial x(3)} \\ \frac{\partial \ell}{\partial x(2)} \end{bmatrix} + J_{\phi(3)} |_{w(2)} \begin{bmatrix} \frac{\partial \ell}{\partial x(3)} \\ \frac{\partial \ell}{\partial x(2)} \end{bmatrix} \]
So if we have a library of “tensor operators”, and implementations of

\[(x_1, \ldots, x_d, w) \mapsto \phi(x_1, \ldots, x_d; w)\]

\[\forall c, \ (x_1, \ldots, x_d, w) \mapsto J_{\phi|x_c} (x_1, \ldots, x_d; w)\]

\[(x_1, \ldots, x_d, w) \mapsto J_{\phi|w} (x_1, \ldots, x_d; w),\]

we can build an arbitrary directed acyclic graph with these operators at the nodes, compute the response of the resulting mapping, and compute its gradient with back-prop.

Writing from scratch a large neural network is complex and error-prone.

Multiple frameworks provide libraries of tensor operators and mechanisms to combine them into DAGs and automatically differentiate them.

<table>
<thead>
<tr>
<th>Framework</th>
<th>Language(s)</th>
<th>License</th>
<th>Main backer</th>
</tr>
</thead>
<tbody>
<tr>
<td>PyTorch</td>
<td>Python</td>
<td>BSD</td>
<td>Facebook</td>
</tr>
<tr>
<td>Caffe2</td>
<td>C++, Python</td>
<td>Apache</td>
<td>Facebook</td>
</tr>
<tr>
<td>TensorFlow</td>
<td>Python, C++</td>
<td>Apache</td>
<td>Google</td>
</tr>
<tr>
<td>MXNet</td>
<td>Python, C++, R, Scala</td>
<td>Apache</td>
<td>Amazon</td>
</tr>
<tr>
<td>CNTK</td>
<td>Python, C++</td>
<td>MIT</td>
<td>Microsoft</td>
</tr>
<tr>
<td>Torch</td>
<td>Lua</td>
<td>BSD</td>
<td>Facebook</td>
</tr>
<tr>
<td>Theano</td>
<td>Python</td>
<td>BSD</td>
<td>U. of Montreal</td>
</tr>
<tr>
<td>Caffe</td>
<td>C++</td>
<td>BSD 2 clauses</td>
<td>U. of CA, Berkeley</td>
</tr>
</tbody>
</table>

One approach is to define the nodes and edges of such a DAG statically (Torch, TensorFlow, Caffe, Theano, etc.)
In TensorFlow, to run a forward/backward pass on

\[
\begin{align*}
 \phi_1(x^{(0)}; w^{(1)}) &= w^{(1)}x^{(0)} \\
 \phi_2(x^{(0)}, x^{(1)}; w^{(2)}) &= x^{(0)} + w^{(2)}x^{(1)} \\
 \phi_3(x^{(1)}, x^{(2)}; w^{(1)}) &= w^{(1)}(x^{(1)} + x^{(2)})
\end{align*}
\]

\[
\begin{align*}
 w_1 &= \text{tf.Variable(tf.random_normal([5, 5]))} \\
 w_2 &= \text{tf.Variable(tf.random_normal([5, 5]))} \\
 x &= \text{tf.Variable(tf.random_normal([5, 1]))} \\
 x_0 &= x \\
 x_1 &= \text{tf.matmul}(w_1, x_0) \\
 x_2 &= x_0 + \text{tf.matmul}(w_2, x_1) \\
 x_3 &= \text{tf.matmul}(w_1, x_1 + x_2) \\
 q &= \text{tf.norm}(x_3) \\
 gw_1, gw_2 &= \text{tf.gradients}(q, [w_1, w_2])
\end{align*}
\]

\[
\begin{align*}
 \text{with tf.Session() as sess:} \\
 &\quad \text{sess.run(tf.global_variables_initializer())} \\
 &\quad _{gw1}, _{gw2} = \text{sess.run([gw1, gw2])}
\end{align*}
\]

Weight sharing
In our generalized DAG formulation, we have in particular implicitly allowed the same parameters to modulate different parts of the processing.

For instance $w^{(1)}$ in our example parametrizes both $\phi^{(1)}$ and $\phi^{(3)}$.

This is called **weight sharing**.

Weight sharing allows in particular to build **siamese networks** where a full sub-network is replicated several times.