A tensor can be of several types:

- `torch.float16`, `torch.float32`, `torch.float64`,
- `torch.uint8`,
- `torch.int8`, `torch.int16`, `torch.int32`, `torch.int64`

and can be located either in the CPU’s or in a GPU’s memory. Operations on tensors located in device’s memory are done by that device. We will come back to that later.
>>> x = torch.zeros(1, 3)
>>> x.dtype, x.device
(torch.float32, device(type='cpu'))
>>> x = x.long()
>>> x.dtype, x.device
(torch.int64, device(type='cpu'))
>>> x = x.cuda()
>>> x.dtype, x.device
(torch.int64, device(type='cuda', index=0))

2d tensor (e.g. grayscale image)

3d tensor (e.g. rgb image)

4d tensor (e.g. sequence of rgb images)
Here are some examples from the vast library of tensor operations:

Creation
- `torch.empty(*size, ...)`
- `torch.zeros(*size, ...)`
- `torch.full(size, value, ...)`
- `torch.tensor(sequence, ...)`
- `torch.eye(n, ...)`
- `torch.from_numpy(ndarray)`

Indexing, Slicing, Joining, Mutating
- `torch.Tensor.view(*size)`
- `torch.cat(inputs, dimension=0)`
- `torch.chunk(tensor, chunks, dim=0)`
- `torch.split(tensor, split_size, dim=0)`
- `torch.index_select(input, dim, index, out=None)`
- `torch.t(input, out=None)`
- `torch.transpose(input, dim0, dim1, out=None)`

Filling
- `Tensor.fill_(value)`
- `torch.bernoulli_(proba)`
- `torch.normal_([mu, [std]])`

Pointwise math
- `torch.abs(input, out=None)`
- `torch.add()`
- `torch.cos(input, out=None)`
- `torch.sigmoid(input, out=None)`
- (+: many operators)

Math reduction
- `torch.dist(input, other, p=2, out=None)`
- `torch.mean()`
- `torch.norm()`
- `torch.std()`
- `torch.sum()`

BLAS and LAPACK Operations
- `torch.eig(a, eigenvectors=False, out=None)`
- `torch.gels(B, A, out=None)`
- `torch.inverse(input, out=None)`
- `torch.mm(mat1, mat2, out=None)`
- `torch.mv(mat, vec, out=None)`
\[
x = \text{torch.tensor([[1, 3, 0],
 [2, 4, 6]])}
\]

\[
x.t()
\]

\[
x\text{.view(-1)}
\]

\[
x\text{.view(3, -1)}
\]

\[
x\text{.narrow(1, 1, 2)}
\]

\[
x\text{.view(1, 2, 3).expand(3, 2, 3)}
\]

\[
x = \text{torch.tensor([[[1, 2, 1],}
 [[2, 1, 2]],
 [[3, 0, 3],
 [0, 3, 0]]])
\]

\[
x\text{.narrow(0, 0, 1)}
\]

\[
x\text{.narrow(2, 0, 2)}
\]

\[
x\text{.transpose(0, 1)}
\]

\[
x\text{.transpose(0, 2)}
\]

\[
x\text{.transpose(1, 2)}
\]
PyTorch offers simple interfaces to standard image data-bases.

```python
import torch, torchvision
cifar = torchvision.datasets.CIFAR10('./cifar10/', train = True, download = True)
x = torch.from_numpy(cifar.train_data).transpose(1, 3).transpose(2, 3).float() / 255
print(x.type(), x.size(), x.min().item(), x.max().item())
```

prints

```
Files already downloaded and verified
torch.FloatTensor torch.Size([50000, 3, 32, 32]) 0.0 1.0
```

Narrows to the first images, converts to float
x = x.narrow(0, 0, 48).float()

Saves these samples as a single image
torchvision.utils.save_image(x, 'cifar-4x12.png', nrow = 12)
Switches the row and column indexes
x.transpose_(2, 3)
torchvision.utils.save_image(x, 'cifar-4x12-rotated.png', nrow = 12)

Kills the green and blue channels
x.narrow(1, 1, 2).fill_(0)
torchvision.utils.save_image(x, 'cifar-4x12-rotated-and-red.png', nrow = 12)
Broadcasting automagically expands dimensions by replicating coefficients, when it is necessary to perform operations.

For instance:

```python
>>> x = torch.empty(100, 4).normal_(2)
>>> x.mean(0)
tensor([2.0476, 2.0133, 1.9109, 1.8588])
>>> x -= x.mean(0)
>>> x.mean(0)
tensor([-4.0531e-08, -4.4703e-07, -1.3471e-07, 3.5763e-09])
```

1. If one of the tensors has fewer dimensions than the other, it is reshaped by adding as many dimensions of size 1 as necessary in the front; then
2. for every mismatch, if one of the two tensor is of size one, it is expanded along this axis by replicating coefficients.

If there is a tensor size mismatch for one of the dimension and neither of them is one, the operation fails.
A = torch.tensor([[1.], [2.], [3.], [4.]])
B = torch.tensor([[5., -5., 5., -5., 5.]])
C = A + B