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Abstract

This paper focuses on the scale-invariance of support vector machines using the

triangular kernel, and on their good performance in artificial vision. Our main

contribution is the analytical proof that, by using this kernel, if both training and

testing data are scaled by the same factor, the response of the classification function

remains the same. We compare the performance of this kernel to those of a standard

Gaussian on face detection and handwritten character recognition.

1. Introduction

For a decade now, Support Vector Machines [3] have proven to be generic and

efficient tools for classification and regression. SVMs got their popularity both from

1



a solid theoretical support [2, 11], and because they clearly untie the specification of

the model from the training. The former corresponds to the choice of the underlying

kernel, and the later can be done optimally with classical quadratic optimization

methods.

We study in this paper the invariance to scale of the induction process based on

SVM using the triangular kernel. What we prove theoretically is that, if one scales

the training set by a certain factor, the learned classification function is scaled by

the same factor. Such an invariance property is not true in general. The estimation

of a scaling parameter for the Gaussian or other standard kernels is done through a

tedious cross-validation process. This implies repeating several times the complete

training of an SVM, usually on very large databases.

Note that the invariance to scale we consider in this paper neither requires or implies

the invariance of the kernel itself. Actually, as we will see, the triangular kernel is

trivially not scale-invariant.

The standard feature space used in artificial vision (raw pixel representation or

wavelet coefficients) are linear transformations of the pixel intensities. Thus in-

variance to scale ensures an invariance to linear transformations of the gray levels

of the picture population.

Beside those theoretical results, we also give experimental evidences of the good

performances of an SVM based on the triangular kernel.

In §2 we summarize the standard formalization of SVMs, and we present the tri-

angular kernel. In §3 we show analytically how induction based on an SVM using

the triangular kernel is invariant to scaling. Then, we give in §4 results on a simple

2D problem and on real-world tasks to illustrate what this invariance means and to

show how it improves the generalization performance.
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2. Support Vector Machines

2.1. Standard Formalization

We will focus on SVMs for classification. Basically, SVM methods project data to

classify in a space of large (possibly infinite) dimension, where a linear criterion is

used. For any training set, one can choose an appropriate projection Ψ so that linear

separability may be achieved. Computation is done without an explicit form of the

projection, but only with the kernel corresponding to the scalar product between

projections.

The model is thus specified by choosing the kernel k:

k(x, x′) = 〈Ψ(x), Ψ(x′)〉

And a function f which sign is the predicted class:

f(x) = 〈ω, Ψ(x)〉 + b

Let X be a random variable on RN standing for the feature distribution of data to

classify (in the original space), and Y on {−1, 1} the real class of the data. We

will denote T = {(x1, y1), . . . , (xn, yn)} a training set generated i.i.d according

to (X, Y ). The computation of ω is achieved by minimizing ||ω|| under correct

classification of the training set, i.e. ∀i, yi f(xi) ≥ 1. This is equivalent to

maximizing the margin between training points and the separating hyper-plan (in

the high-dimensional space), and ensures good generalization property on the real

population [11]. It can be proven [2] that ω is of the form
∑

i αiyi Ψ(xi), where the

αi come from the following quadratic optimization problem:
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Maximize

L(α) =
∑

i

αi −
1

2

∑

i,j

αiαj yiyj k(xi, xj) (1)

under

∀i, αi ≥ 0 and
∑

i

αiyi = 0 (2)

The value of b does not appear in the optimization, and it has to be computed, given

the αi:

b =

min
yi=−1

∑

j

αjk(xi, xj) − min
yi=+1

∑

j

αjk(xi, xj)

2

Finally, using the expansion of ω, we can write the classification function as:

f(x) =
∑

i

αi yi k(xi, x) + b

2.2. Triangular kernel

The classification power of SVMs comes directly from the complexity of the under-

lying kernel. Many kernels can be used[9, 13], the most standard being the Gaussian

[10]:

k(x, x′) = exp
(

−||x − x′||2/σ2
)
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The parameter σ in this kernel is directly related to scaling. If it is overestimated,

the exponential behaves almost linearly and it can be shown that the projection into

the high-dimensional space is also almost linear and useless[4]. On the contrary,

when underestimated, the function lacks any regularization power and the decision

boundary is jagged and irregular, highly sensitive to noisy training data (see figure

2, middle row). Several methods have been developed to estimate an optimal σ, so

that the whole process would be invariant to scaling [4].

We focus here on a less standard kernel referred to as the unrectified triangular

kernel:

kT(x, x′) =−||x − x′||

It has been shown in [1] that this defines a conditionally positive-definite kernel.

This means that for any x1, . . . , xn and any c1, . . . , cn such that
∑

i ci = 0, then
∑

i,j ci cj kT(xi, xj) ≥ 0. Due to the equilibrium constraint
∑

i αi yi = 0 in (2), this

ensures that kT can be used as a SVM Kernel [8].

3. Scale-invariance of the classification

3.1. Scaling of the triangular kernel

Even if the triangular kernel is not invariant to scaling, it still has an interesting weak

property of invariance that we could describe as an invariance “in shape” (see figure

1). Given a scaling factor γ > 0 this weak invariance can be formally expressed as:

kT(γ x, γ x′) =−γ ||x − x′||
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Figure 1: Gaussian kernel (continuous line) and triangular kernel (dashed line)

at various scales (top to bottom, respectively ×100, ×102 and ×104). Intuitively,

whereas the triangular kernel is identical in shape at all scales, the Gaussian kernel

has different shapes, from a Dirac-like to a uniform weighting of the neighborhood.
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= γ kT(x, x′)

Thus, when the points are scaled by a certain factor γ, the value of the kernel scales

by γ.

3.2. Invariance of the classifier

In the following, we consider a situation where we scale the data by a factor γ > 0.

Let’s denote T γ = {γ x1, . . . , γ xn} a training set for that population. We denote

f γ the classification function obtained by training the SVM on T γ (thus, f 1 is the

classifier built from the data at the original scale). We will show the main following

result:

∀x, f γ(γ x) = f 1(x)

Let αγ , ωγ and bγ be the parameters of the classification function estimated on T γ .

We have:

f γ(x) =
∑

i

αγ
i yi kT(γ xi, x) + bγ

Thus, the αγ
i come from the minimization system corresponding to T γ :

Maximize

Lγ(αγ) =
∑

i

αγ
i −

1

2

∑

i,j

αγ
i αγ

j yiyj kT(γ xi, γ xj)

under
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∀i, αγ
i ≥ 0 and

∑

i

αγ
i yi = 0

It follows:

Lγ(αγ) =
∑

i

αγ
i −

γ

2

∑

i,j

αγ
i αγ

j yiyj kT(xi, xj)

=
1

γ





∑

i

γαγ
i −

1

2

∑

i,j

γαγ
i γαγ

j yiyj kT(xi, xj)





=
1

γ
L1(γ αγ)

Which leads to: ∀i, αγ
i = 1

γ
α1

i , and to the following equality, ∀x:

∑

j

αγ
j yjkT(γx, γxj) =

∑

j

1

γ
α1

jyj(γkT(x, xj))

=
∑

j

α1
jyjkT(x, xj)

Thus, we can easily show that bγ = b1. Finally we obtain our main result:

f γ(γx) =
∑

i

αγ
i yi kT(γ xi, γ x) + bγ

=
∑

i

α1
i yi kT(xi, x) + b1

= f 1(x)

3.3. Simple 2D classification problem

To illustrate the invariance to scale of the induction process, we have set up a simple

classification task in two dimension. The original training population is a set of 512
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Figure 2: A simple classification task in 2D. The upper row shows the training set

scaled by three different factors. The figures are zoomed according to the same

factors for ease of representation. The middle row shows the results of the classifi-

cations with a Gaussian kernel, and the lower row shows results with the triangular

kernel.
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points, uniformly distributed in the unit square. The class of each of those samples

is a deterministic function of its location in the square (see figure 2, upper row).

From this sample, we have produced two others, one scaled down by a factor of 10,

and the other scaled up by the same factor. We have built three SVMs based on a

Gaussian kernel with σ = 0.2 on those three samples, and three SVMs based on the

triangular kernel. Results are shown on figure 2.

As expected, the Gaussian kernel either smoothes too much (figure 2, middle row,

left), is accurate (figure 2, middle row, center) or overfits (figure 2, middle row,

right), while the triangular kernel behaves similarly at all scales.

4. Experiments

4.1. Face detection

The initial motivation for this study was to understand the good generalization per-

formance of the triangular kernel in the context of face detection. Sahbi and Geman

have developed a highly efficient detector based on a hierarchy of SVMs using the

triangular kernel [7]. Their approach consists in building several SVMs dedicated

to population of face pictures more and more constrained in position in the image

plan.

We focus here on the generalization performances of individual classifiers dedi-

cated to constrained populations of face pictures. Figure 3 shows some examples

from two of them, the first less constrained than the second. Both are synthetically

generated by doing affine bitmap transformations of the original pictures which are

taken from the ORL database of faces[5].

Each picture is a 64 × 64 pixel in 256 gray levels and contains a face roughly cen-

tered. The distance between the eyes of each face is between 10 and 20 pixels. We
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Figure 3: Training samples of two face populations. The upper row shows samples

from a loosely constrained population while the lower row shows a sample from a

highly constrained population.
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Table 1: Performance comparison between the triangular and the Gaussian kernel

on the face vs. non-face classification problem.

Weak Hard

Kernel constraints constraints

Triangular 6.88% 0.69%

Gaussian (σ = 103) 7.36% 1.56%

Gaussian (σ = 6.102) 7.83% 0.90%

Gaussian (σ = 102) 21.14% 37.73%

Gaussian (σ = 10) 41.80% 37.73%

use as features a vector of 256 Haar wavelet coefficients. These simple Haar features

allow us to capture the main facial details at various orientations and resolutions and

can be computed efficiently using the integral image [12].

The results given here correspond to SVMs trained with 400 face pictures and 600

background images. Error rates are estimated on 400 other face pictures, verifying

the same pose constraints, and 600 other background pictures.

As expected, the more the faces are constrained in pose, the easier is the classifica-

tion, since tolerance to translation and rotation is no more expected from the SVM.

Results on table 1 show the performance of both the triangular and the Gaussian

kernel. While the Gaussian kernel relies heavily on the choice of σ, the triangular

kernel achieves the same order of performances without tuning of any scale param-

eter.
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Table 2: Performance comparison between the triangular and the Gaussian kernel

on handwritten digit recognition.

Kernel Error rate

Triangular 3.93%

Gaussian (σ = 10−1) 35.87%

Gaussian (σ = 1) 5.18%

Gaussian (σ = 10) 6.89%

Gaussian (σ = 100) 20.68%

Figure 4: Some handwritten digits from the MNIST database.

4.2. Character recognition

This last experiment is a classical problem of handwritten digit recognition on the

MNIST database [6]. This database contains 70, 000 black and white digit pictures

of size 28× 28 pixels (see figure 4). The features we use for that experiment are 64

Haar-wavelet coefficients, similar to the ones used for the face detection experiment.

We train ten SVMs, f (0), . . . , f (9), each one dedicated to one of the digits. The

training for each of them is done on 60, 000 examples and the testing is done on

10, 000 other images. For each picture, we consider as features 64 simple Haar-

wavelet coefficients to gain local invariance to deformations. The final classifier F

is based on a winner-take all rule: the result of the classification is the index of the

13



SVM with the highest response.

F (x) = arg max
i

f (i)(x)

Results are shown on table 2 for the Gaussian kernel at various σ and for triangular

kernel.

5. Discussion

5.1. Ideal invariant training set

Another interesting property appears when we consider an hypothetical infinite two-

dimensional spiral-shaped training set. Such an infinite set T could be built to be

invariant to a certain mapping ρ, composition of a rotation and a scaling (this set

would be an union of orbits of that mapping cf. figure 5). The training of an SVM

with the triangular kernel would be also invariant under that transformation. So if

we denote fT (respectively fρ(T )) the classification function obtained by training on

T (respectively on ρ(T )), as T = ρ(T ) we would have

∀x, fT (x) = fρ(T )(ρ(x)) = fT (ρ(x))

which means that the learned boundary itself would be invariant. That implies it

would possess details at several scales at while. We do not have such an example

in real, but we can still approximate that result by considering a finite spiral-shaped

set. As it can be seen on figure 6, the boundary at the center has a finer scale far

smaller than at the outer area.
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ρ

Figure 5: The iterations of a mapping ρ, composition of a rotation and a scaling,

generate an infinite set of point invariant under ρ.

5.2. Soft margins

Soft margin SVM training consists in bounding the Lagrange coefficients αi to

control the influence of outliers on the learning process. Also, in many concrete

situations, the range of values allowed for the coefficients is fixed by computer rep-

resentations of real numbers. With such a bounding, the theoretical invariance to

scale would not hold anymore.

Nevertheless, our main result shows that, with the triangular kernel kT, the coeffi-

cients are proportional to the inverse of the scaling of the population. Such a linear

increase is very reasonable and lead to values that could be handled without bound-

ing in all our experiments.

6. Conclusion

We have shown in this article that classification with SVMs based on the triangular

kernel is invariant to the scaling of the data. Therefore, using this kernel avoids
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Figure 6: The triangular kernel can separate two populations, even if it requires

various scales. Training set is shown on the top, and classification with the trian-

gular kernel is shown below.
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the estimation of an optimal scaling parameter. Such an estimation is usually based

on cross-validation and is computationally intensive, since it requires to run sev-

eral times the complete training process. Experiments demonstrate the very good

performances of this kernel on real data, compared to those of the usual Gaussian

kernel, even when the scale parameter of the later is optimized.

Our forthcoming works will study this specific property and more generally the

good generalization performance of the triangular kernel.
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