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Abstract

Predicting cellular properties from molecular or genetic
data is a challenge for bioinformatics and machine learn-
ing. In brain slices of neuronal tissue, it has become pos-
sible to both measure electro-physiological properties of a
given neuron and to extract a sample of its cytoplasm so
that expressed genes can be amplified. Thus, the presence
or absence of genes related to ion channels in the neuronal
cell membrane can be correlated with neuronal behavior
encoded as a set of electro-physiological parameters. A typ-
ical gene amplification process is asymmetric in the sense
that false positives are very rare, whereas false negatives
(genes expressed but not amplified) are rather common. An
analysis of a probabilistic model of that process yields a
similarity measure between two strings of amplified genes
that takes the asymmetry of the amplification process into
account. This similarity measure can be put under the
form of a conformal-transformed kernel. We provide exper-
iments with support-vector machines on artificial and neu-
ronal data.

1. Introduction

The purpose of this paper is to study the prediction of the
electro-physiological properties of cortical neurons from
the result of the amplification of a family of genes related to
ion channels. We use a non-parametric regression method
known as a Support Vector Machine[7, 2] which has demon-
strated great performance on a large class of problems, in-
cluding inference of biological data. This method requires
to chose a similarity measure on the input data space which
are in our case binary strings standing for the result of the
gene amplification. Each binary digit represent the presence
or absence of one of the gene in the amplification.

We introduce a model of the errors appearing in the gene

amplification technique and propose to use the conditional
probability for the neurons to have the same expressed
genes, given the amplified genes, as a similarity measure
between the amplification strings. We show analytically
that such a similarity measure can be put under the form
of a conformal-transformed kernel, which has already been
studied in the context of Support Vector Machines[5, 1].

Experiments on both real and synthetic data demonstrate
that the optimal kernel parameter values are consistent with
the high false-negative and low false-positive error rates of
the gene amplification method. However, the improvement
in prediction performance remains marginal, and the op-
timal results are obtained with the symmetric form of the
conformal-transformed kernel.

In §2 we describe how the gene amplification is done,
and our probabilistic model of the amplification errors. We
present in §3 a similarity measure based on a computation
of the conditional probability for the strings of expressed
genes to be identical, given the two strings of amplified
genes. Finally, in §4 and §5 we give and discuss experi-
mental results.

2. Probabilistic model

We propose a model of the distribution of amplified
genes, given the expressed ones: for every gene expressed,
there is a high probability for its amplification to fail, while
on the contrary there is a close to zero probability for non-
expressed genes to be amplified by mistake.

Intuitively, this leads to an interesting asymmetry: while
the detections of the same gene in two different neurons
ensure that they really share this gene, the absence in both
is less informative and does not prove that they share the
absence of the gene, as the gene may be actually expressed
in one of the neuron and was missed during amplification.



Electrode

RNA fragments

Cytoplasm

Cell

Pipette

Figure 1. Patch-clamp procedure: suction
breaks the cell membrane and makes the cy-
toplasm enter the pipette and get in contact
with the electrode. RNA fragments from the
cell also get into the pipette and can be am-
plified later on by RT-PCR.

2.1. Measure of electro-physiological pa-
rameters

The measure of electro-physiological properties of the
cell is done using whole-cell patch clamp [3, 4] (see figure
1). This procedure consists of putting a hollow tube in con-
tact with the cell and breaking the exterior membrane by
suction, so that a part of the cytoplasm gets into the tube in
contact with an electrode.

That electrode is then used to both inject current in the
cell and measure the cell’s response. The signal is processed
under digital form after sampling in time and amplitude.
Details about the experimental procedures are given in [6].

2.2. Gene amplification

A small volume of cell fluid is extracted from the neu-
ron, and subject to the Reverse Transcription – Polymerase
Chain Reaction (RT-PCR) which is a molecular biological
method for amplifying DNA from RNA strands. The RNA
is transcribed into DNA using the reverse transcriptase en-
zyme, and the DNA is then exponentially amplified through
the PCR (Polymerase Chain Reaction) process.

The product of the PCR is then injected into a gel and
subjected to an electric field. Negatively charged DNA
molecules migrate in the gel to a location depending on their
lengths. By comparing those locations to that of known
fragments, they can be identified.

The amplification of the RNA related to one gene can
fail if there are no such RNA fragment in the sample of cy-
toplasm used for the RT-PCR. Inversely, if alien RNA con-
taminates the sample of fluid, there can be false positive
amplifications. However, it can be assumed that the exper-
imental procedures prevent such contamination with high
confidence.

2.3. Analytical model

In the following we denote by X the random variables on
{0, 1}N standing for the string of amplified genes (measure-
ment), and Z the string of expressed genes (hidden truth).
The value 1 stands for “expressed” or “amplified” while 0
stands for “non expressed” or “non amplified”. The only in-
formation we have access to is the value of X , and we have
to infer some property of Z from the stochastic relation be-
tween X and Z (see figure 2).

If l ∈ {1, . . . , N}, and s is a string of N elements (or a
random variable on the string space), we denote in the rest
of the paper by s(l) the value of the l-th digit of the string
s (which can be seen as the expression or the amplification
status of the l-th gene).

The amplification process makes false positive (amplifi-
cation of non-expressed genes, for instance by contamina-
tion by alien DNA) very unlikely, while the probability ε of
false negatives (non-amplification of expressed genes, for
instance because no RNA was caught) is high. If we con-
sider a null false-positive error rate, this leads to the follow-
ing model of P (X(l) | Z(l)), where ε is the false-negative
probability:

P (X(l) = 0 | Z(l) = 0) = 1
P (X(l) = 0 | Z(l) = 1) = ε

P (X(l) = 1 | Z(l) = 0) = 0
P (X(l) = 1 | Z(l) = 1) = 1 − ε

This expresses the fact that there is zero probability for the
gene to be amplified if it is not actually expressed in the cell,
while it has a probability ε not to be detected, even if it is in
the cell.

To complete our model, we also make the assumption
that the amplification errors are independent, which can
be formulated as the conditional independence of the X(l),
given Z . This assumption is legitimate, considering that the
false negative errors are mostly due to the absence of RNA
fragments in the fluid sample taken from the cell. To il-
lustrate that point, consider a bag containing a very large
number of white balls (the cytoplasm) and a few groups
of balls of several other colors (RNA fragment related to
certain genes). If the number of sampled balls is large rela-
tively to the size of the colored ball population, picking balls
of one color does not influence the probability to pick balls
of another color, thus making the events of picking balls of
certain colors independent.

3. A gene-based kernel

One of the generic tools most used in statistical learning
today are the so-called “kernel methods” [5]. These tech-
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Figure 2. In our model, the electro-
physiological parameter Y we want to
predict is a function of the string of ex-
pressed genes Z, which is indirectly known
through a stochastic and noisy string of
amplified genes X . Even if the parameter to
be predicted were a deterministic function
of the expressed genes, the prediction could
not be exact since information is lost during
the amplification.

niques generalize linear methods such as regression or PCA
by mapping the data into a space of large dimension before-
hand.

The resulting generalized dot product is often referred to
as a Kernel, and can be seen as a similarity measure. We
describe in §3.1 the classical Support-Vector Machine tech-
nique, which we use for our experiment.

Based on the probabilistic formulation of §2.3, we de-
rive a kernel that can play the role of a similarity measure
between two strings of amplified genes.

3.1. Regression with SVMs

While Support Vector Machines were originally devel-
oped for classification (i.e. predict a discrete value from
known data), they have demonstrated great performances
when used for regression. In the linear case, the predictor
f(X) has the form of a linear function of the input vector
f(x) = 〈x, ω〉. The training process selects an ω with good
generalization properties by minimizing

E(ω) =
∑

i

| yi − 〈xi, ω〉 |ε + ||ω||2

where |e|ε is e − ε for e > ε and 0 else. This cost func-
tion forces the predicted value to be at less than ε than the

training ones, and it can be minimized optimally.
This rule can be improved by combining it with a map-

ping Φ in a space of higher dimension. Formally, the map-
ping Φ does not have to be explicit, since it only appears in
dot products of the form 〈Φ(x), Φ(x′)〉. Thus, any methods
relying on a linear rule can be generalized into a “kernelized
version” as soon as one is provided with the expression of
k(x, x′) = 〈Φ(x), Φ(x′)〉, even if neither Φ nor even the
high-dimension space have been made explicit.

However, this kernel k keeps the role of a similarity mea-
sure it has in the basic linear case.

3.2. Conditional probability as a kernel

Given two strings x1 and x2 of amplification results, we
propose to quantify the similarity between the strings as the
probability for the expressed genes to be the same in both
neurons, given that the two strings of amplified genes are
respectively x1 and x2:

k(x1, x2) = P (Z1 = Z2 | X1 = x1, X2 = x2)

This value can be evaluated with a simple Bayesian rule.
We know that X1 and X2 are independent, and that Z1 and
Z2 are independent too. Also, according to our model, the
X

(l)
k are conditionally independent given Zk. We can prove

that

k(x1, x2) =
N∏

l=1

κl(x
(l)
1 , x

(l)
2 )

with:

κl(a, b) =
∑

c∈{0,1}
P (Z(l)

1 = c |X(l)
1 = a) P (Z(l)

2 = c |X(l)
2 = b)

Note that κl can be interpreted as a similarity measure be-
tween neurons based on the presence or absence of the k-th
gene alone. It will take into account the high false nega-
tive rate and the absence of false positive. We define the
following quantities:

fn = P (X(l) = 0 | Z(l) = 1)
fp = P (X(l) = 1 | Z(l) = 0)

α = P (X(l) = 1)

β = P (Z(l) = 1) =
α − fp

1 − (fp + fn)

From which we compute κl:

κl(0, 0) =
1

(1−α)2
(
(1−β)2(1−fp)2 + β2fn

2
)

κl(1, 0) = κl(0, 1)

=
1

α(1−α)
(
(1−β)2fp(1−fp) + β2fn(1−fn)

)



κl(1, 1) =
1
α2

(
(1−β)2fp

2 + β2(1−fn)2
)

3.3. Conditional probability as a conformal-
transformed kernel

Since this kernel is defined on binary strings, we can
prove that for adequate values of δ and γ

k(x1, x2) ∝ exp
(
δ||x1||2 + δ||x2||2 + γ ||x1 − x2||2

)
,

which is a conformal-transformed kernel [5, 1] if γ < 0.
The coefficient δ is positive if the presence of an ampli-
fied gene is more informative than its absence (κ(1, 1) >
κ(0, 0)), and negative otherwise. Thus, if there are more
false-negatives than false-positives, samples with a lot of
amplified genes (i.e. large ||x1||2) are more significant and
more weighted.

4. Experiments

We propose to validate the results presented above by
training and testing SVMs on both synthetic and real data.
We will look at the performance of a standard linear predic-
tor (i.e. classical linear regression), regularized linear pre-
dictor and the custom quasi-conformal kernel of the form
presented in §3.3.

All the experiments have been done with softwares writ-
ten in C++ on GNU/Linux computers. We have used
free software tools (editor, compiler, debugger, word-
processors, etc.), mainly from the Free Software Founda-
tion1. We have also used the Libsvm2 from Chih-Chung
Chang and Chih-Jen Lin.

4.1. Synthetic data

To test the efficiency of this new kernel, we have gen-
erated synthetic data according to our model presented in
§2 consisting of simulating the amplification of 9 genes in
100 neurons and a virtual EP function. Each gene expres-
sion has marginal probability 0.5. The 9 genes are divided
into two sub-groups (one of 5 genes, the other of 4) and the
EP functions depends on the number of genes expressed in
each of those groups. If more than half of the genes of the
first group are expressed, than the EP is equal to the num-
ber of genes expressed in the second group, if less than half
of the genes of the first group are expressed, than the EP
is equal to 4 minus the number of genes expressed in the
second group. Such an EP is simple, yet highly non-linear.

1http://www.fsf.org
2http://www.csie.ntu.edu.tw/˜cjlin/libsvm

The amplification is simulated by flipping at random the
simulated expressed genes. In the first experiments, the flip-
ping is done symmetrically with probability 0.1 for both
false positive (i.e. genes non expressed which are ampli-
fied) and false negatives (genes actually expressed but not
amplified). In the second experiment, false positives occur
with probability 0.01 while false negatives occur with prob-
ability 0.2, which is more similar to real experiments.

Optimal Bayesian predictor: Because we know the true
distribution of the data, we can compute the conditional ex-
pectation, given the amplified genes. This value is optimal
for the quadratic error.

The value computed by this predictor for a given string
of amplified genes x� can be understood intuitively as the
following: let’s imagine that we generate a very large – vir-
tually infinite – number of synthetic experiments. For each
of them, we generate a string z, from which we compute the
EP, and a second string x of amplified genes, obtained by
flipping off certain expressed genes. If the x thus obtained
is equal to x�, we note the value of the EP. The average of
all those collected EP values is the conditional expectation,
and our prediction. In practice, the computation is not done
that way. Instead, we analytically compute the conditional
distribution on the values of the EP, and from it, we compute
the expected value.

Note that this Bayesian predictor does not use any train-
ing set: it directly estimates the averaged value to predict,
given the amplified genes.

Estimation of δ: As introduced in §3.3, the δ parameter
controls the asymmetry of the kernel: a positive δ will lead
to more weight on examples with a large number of am-
plified genes, while a negative δ will put more weight on
examples with a small number of amplified genes.

The optimal δ is estimated by training the SVM on a
training set for different values of δ and keeping the delta
leading to the optimal error rate on a validation set. Those
sets are generated according to the model described above.
This is repeated 100 times, each time with a training and
validation sets of size 100.

Histograms of the optimal δ in the symmetric and asym-
metric situation are shown on figure 3. The results are con-
sistent with the model: the assymetry in the amplification
errors leads to an assymetry in the optimal δ distribution.

Prediction performance: Prediction performance is es-
timated by computing the correlation between the true and
the predicted value, estimated on 100 samples. We can com-
pare two predictors by repeating the experiment 100 times,
each one consisting of several prediction from which we can
compute a correlation. Correlations obtained with different
methods can be plotted against each others. The position of
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Figure 3. Top: distribution of optimal δ on
synthetic data in the symmetric case FN =
0.1 and FP = 0.1, 49 out of 100 are negative.
Bottom: distribution of optimal δ on synthetic
data in the asymmetric case FN = 0.2 and
FP = 0.01. Only 15 out of 100 are negative.

the plotted points with respect to the diagonal gives a good
indication of the relative performances of the two methods.
Results are shown on figure 4 and 5.

As expected, SVM performs better than linear or regular-
ized linear regression, and worst than the optimal Bayesian
predictor. The surprising result is the similar performance
of the Gaussian and our custom conformal-transformed ker-
nel.

4.2. Real data

Those real data consist of 183 neurons. For each neu-
rons, we are provided with a binary vector (x1, . . . , x29) ∈
{0, 1}29 representing the amplification result of 29 genes,
and a real-valued vector (y1, . . . , y61) ∈ R61 of 61 electro-
physiological (EP) measures, as described in §2.1, §2.2. See
[6] for details about this data set and the extraction process.

Estimation of δ: For each one of the 61 EP, the first set
of experiments consist of estimating the optimal δ through
several rounds of cross-validation to check the consistency
with the analytical model we propose. Due to the high false
negative error rate, the optimal δ should be positive, leading
to a greater influence of training samples with more ampli-
fied genes.

Figure 6 shows how the 61 optimal δ are distributed.
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Figure 4. Custom conformal-transformed vs.
linear and regularized linear on synthetic
data with FN = 0.2 and FP = 0.01
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Figure 5. Custom conformal-transformed vs.
Gaussian and Bayesian on synthetic data
with FN = 0.2 and FP = 0.01

A very large majority are positive, and less than 17% are
strictly negative.

Prediction performance: A straight-forward prediction
scheme is the standard linear regression. Despite its sim-
plicity, it behaves well in the context of noisy data and small
training sets such as the one we have to deal with here.

Prediction with SVM outperforms both linear regression
and regularized linear regression, see figure 7. However, the
asymmetric kernel does not provide a significant improve-
ment in prediction: as seen on figure 8, the performance are
only marginally better with an asymmetric kernel and an
optimized δ than with a Gaussian kernel. The most likely
reason for such an absence of performance is due to over-
fitting of the model for small data sets, and good perfor-
mance of the Gaussian kernel for large dataset. In both
cases, the asymmetry does not bring additional prediction
capabilities.



 0

 5

 10

 15

 20

-0.4 -0.2  0  0.2  0.4

Figure 6. Of the 61 optimal δ estimated on the
real data 16 are null and 35 are strictly posi-
tive. Only 10 are negative. This is consistent
with a false negative error rate higher than a
false positive one.
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Figure 7. Correlation with the regularized lin-
ear regression vs. correlation with linear re-
gression (left) and correlation with Gaussian
SVM vs. correlation with linear regression
(right).
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Figure 8. Correlation on the test set with
the custom conformal-transformed SVM vs.
correlation with regularized linear regression
(left) and correlation on the test set with
asymmetric kernel SVM vs. correlation with
standard Gaussian SVM (right).

5. Conclusion

We proposed in this article an analytical model of the
RT-PCR amplification errors, and derived from that model
that the use of a pseudo-conformal kernel is sound to predict
phenotypical parameter values.

The experiments demonstrate the consistency between
our model and the hypothesis of false negatives in the RT-
PCR. When we optimize the parameter of that kernel, the
obtained values are consistent with a high false-negative er-
ror rate and may be a meaningful procedure to detect it.
Experiments show that the quality of the prediction of the
phenotypical values does not improve when the asymmetri-
cal component of the kernel is optimized.

In this study, we have ignored a second source of false
negative, which is the exhaustion of the polymerase during
the amplification process. A few RNA strands can “take
over” early in the RT-PCR process, and due to the exponen-
tial reaction can let other strands non-amplified because of
a lack of polymerase later in the process. Such an effect
creates strong statistical dependencies between individual
gene amplifications and would lead to a more computation-
ally expensive similarity measure.
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