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Abstract: In a context of classi�cation, we propose to use conditional mutual information
to select a family of binary features which are individually discriminating and weakly depen-
dent. We show that on a task of image classi�cation, despite its simplicity, a naive Bayesian
classi�er based on features selected with this Conditional Mutual Information Maximization
(CMIM) criterion performs as well as a classi�er built with AdaBoost. We also show that
this classi�cation method is more robust than boosting when trained on a noisy data set.

Key-words: classi�cation, feature selection, Bayesian classi�er, mutual information



Sélection de descripteurs par maximisation

de l'information mutuelle conditionnelle

Résumé : Dans un contexte de classi�cation, nous proposons d'utiliser l'information mu-
tuelle conditionnelle pour sélectionner une famille de descripteurs binaires qui sont indivi-
duellement informatifs tout en étant faiblement dépendants entre eux. Nous montrons sur
un problème de classi�cation d'images que malgré sa simplicité un classi�eur de type Bayé-
sien naïf utilisant des descripteurs sélectionnés de cette manière obtient des taux d'erreur
similaires à ceux d'un classi�eur construit à l'aide d'AdaBoost. Nous montrons également
que cette technique est beaucoup plus robuste que le boosting dans un cadre bruité.

Mots-clés : classi�cation, sélection de features, classi�eur bayésien, information mutuelle



CMIM feature selection 3

1 Introduction

By reducing the number of considered features, one can both reduce over-�tting of learning
methods, and increase the computation speed of prediction [GE03]. We focus in this paper
on the selection of a few tens of binary features among a set of several tens of thousands of
them in a context of classi�cation.

The most standard ways to select features consist in ranking them according to their
individual predictive power, which is estimated by various methods such as Fisher score
[FCD+00], Kolmogorov-Smirnov test, Pearson correlation [MP00] or mutual information
[Bat94, BW96, Tor03]. Selection based on such a ranking does not ensure a good orthog-
onality between features, and can lead to redundant and thus less informative selected
families.

Our approach consists in picking features which maximize their mutual information with
the class to predict, conditionally to the response of any feature already picked. This Condi-
tional Mutual Information Maximization criterion (CMIM) does not select features similar
to already picked ones, even if they are individually powerful, as they do not carry additional
information about the class to predict. Thus, it ensures a good tradeo� between redundancy
and discrimination.

Experiments on a face vs. non-face classi�cation task demonstrate that features chosen
according to this criterion can be e�ciently combined with a naive Bayesian approach [DH73,
LIT92] and lead to error rates similar to those obtained with AdaBoost [FS96a]. Also,
experiments show the robustness of this method with respect to noisy training sets, as it
achieves better results than regularized AdaBoost, even though it does not require the tuning
of a regularization parameter.

In �2 we summarize the context of this work, we introduce the notations for the rest of
the paper and we give a short summary of standard classi�cation techniques. We quickly
present tools from information theory and describe our feature-selection scheme in �3. We
give results of experiments � mainly comparisons with AdaBoost � in �4 and �5, and we
�nally discuss those results and the forthcoming developments of this work in �6.

People in a hurry who are familiar with the topic can jump directly to section �2.1 (page
3) for the notations, �3.2 (page 7) for the description of the CMIM algorithm, and to tables
1 and 2 (pages 11 and 14) for error rates and comparison with AdaBoost.

2 Classi�cation

2.1 Notations

Because this work was originally motivated by the design of a face detector, our experiments
are based on a classi�cation of face vs. non-face images. For that reason, we introduce
notations related to image classi�cation for the sake of understanding, but our approach is
generic and can be applied to any set of binary features. We give here a rough description
of the experimental settings (images, features, etc.) but we go into details in �4.
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4 Fleuret

Let I denote the set of 28× 28 pixel grayscale images, and X a random variable on I
standing for the distribution of images. We denote Y a boolean random variable for the
class to predict, the value 0 standing for non-face and 1 for face (cf. �4.1).

We consider a set of boolean features f1, . . . , fN , which are mappings from I → {0, 1}.
The number of features N is pretty large, of the order of tens of thousands. In the ex-
periments those features are boolean functions whose values depend with the presence or
absence of edges at certain position in the picture. Each of them is thus de�ned by its
location in the 28× 28 picture frame, its orientation and its tolerance (cf. �4.2).

We denote F1 = f1(X), . . . , FN = fN (X) the boolean random variables standing for the
responses of the features. We will often make a confusion between the features as mappings
and as random variables (i.e. between the fi and the Fi).

Finally, we denote fn(1), . . . , fn(M) the selected features, where M is the number of
features we select, and is very small compared to N (of the order of �fty).

All statistical estimations during training and testing are based on samples of a few
hundreds of pictures, labeled by hand with their real classes (x1, y1), . . . , (xT , yT ) (cf. �4.1).
Those sets contain as many face and non-face pictures, which correspond to an equilibrated
prior P (Y = 1) ' 1/2. We will use them implicitly for all the empirical estimations during
training or testing.

2.2 Perceptron and naive Bayesian classi�er

Given a subset of features fn(1), . . . , fn(M) already selected, we consider linear decision rules,
which depend on the sign of an expression of the form:

f(x) =
M∑
i=1

ωi fn(i)(x) + b

We have used two algorithms to estimate the (ω1, . . . , ωM ) and b from the training set.
The �rst one is the classical perceptron [Ros58, Nov62] and the second one is the naive
Bayesian classi�er [DH73, LIT92].

Perceptron

In a nutshell, the perceptron learning scheme consists in estimating iteratively the vector
(ω1, . . . , ωM ) by correcting it as long as training examples are misclassi�ed. More precisely,
as long as there exists a misclassi�ed example (yi, xi) its feature vector is added to the
normal vector if it is of class positive, and is otherwise subtracted:

∀k ωk ← ωk + (2 yi − 1) fn(k)(xi)

The bias term b is computed by considering a constant feature always equal to 1. If the
training set is linearly separable in the feature space, the process is proved to converge to

INRIA



CMIM feature selection 5

a separating hyperplane and the number of iterations can be easily bounded (see [CST00]
pages 12-14). If the data are not separable, the process never ends, and has to be terminated
after a number of iterations �xed a priori.

Naive Bayesian

The naive Bayesian classi�er is a simple likelihood ratio test with an assumption of condi-
tional independence between the features. The predicted class depends on the sign of:

f(x) = ln
P̂ (Y = 1 |Fn(1) = fn(1)(x), . . . , Fn(K) = fn(K)(x))

P̂ (Y = 0 |Fn(1) = fn(1)(x), . . . , Fn(K) = fn(K)(x))

Under the assumption that the Fn(.) are conditionally independent, given Y , we have :

f(x) = ln
P̂ (Fn(1) = fn(1)(x), . . . , Fn(K) = fn(K)(x) |Y = 1)

P̂ (Fn(1) = fn(1)(x), . . . , Fn(K) = fn(K)(x) |Y = 0)
+ a

= ln
∏K

i=1 P̂ (Fn(i) = fn(i)(x) |Y = 1)∏K
i=1 P̂ (Fn(i) = fn(i)(x) |Y = 0)

+ a

=
∑

i

ln
P̂ (Fn(i) = fn(i)(x) |Y = 1)

P̂ (Fn(i) = fn(i)(x) |Y = 0)
+ a

=
∑

i

{
ln

P̂ (Fn(i) = 1 |Y = 1)

P̂ (Fn(i) = 1 |Y = 0)
fn(i)(x) + ln

P̂ (Fn(i) = 0 |Y = 1)

P̂ (Fn(i) = 0 |Y = 0)
(1− fn(i)(x))

}
+ a

=
∑

i

{
ln

P̂ (Fn(i) = 1 |Y = 1)

P̂ (Fn(i) = 1 |Y = 0)

P̂ (Fn(i) = 0 |Y = 0)

P̂ (Fn(i) = 0 |Y = 1)

}
fn(i)(x) + b

Thus we �nally obtain a simple expression for the coe�cients:

ωi = ln
P̂ (Fn(i) = 1 |Y = 1)

P̂ (Fn(i) = 1 |Y = 0)

P̂ (Fn(i) = 0 |Y = 0)

P̂ (Fn(i) = 0 |Y = 1)

The bias b is related to the prior P (Y = 1) and can be estimated given the ωi to minimize
the error rate on the training set.

Remark

Those two classi�ers have di�erent strengths and weaknesses. The perceptron takes into
account the joint statistics of the features, and deals with outliers by increasing their in�u-
ence in the �nal orthogonal vector. On the contrary, the naive Bayesian classi�er is based

RR n° 4941



6 Fleuret

on estimates of the conditional marginal probabilities and is more robust to the presence of
outliers. This means that while the perceptron is able to deal with dependent features, it
su�ers more from over�tting than the naive Bayesian.

2.3 AdaBoost

The idea of boosting is to select and combine several classi�ers (often referred to as weak-
learners, as they achieve individually high error rate) into a more global one with a voting
procedure. In our case, the features are considered as weak-learners. Thus, the training of
the weak-learner consists simply in picking the features with the minimum error rate. We
also consider for each feature its anti-feature (i.e. the one which responds the opposite).

The selection is done by maintaining a distribution on the training examples which
accumulates on the misclassi�ed ones during the training. At iteration k, the weak learner
fn(k) which minimizes the weighted error rate is selected, and the distribution is refreshed
to increase the weight of the misclassi�ed samples and reduce the importance of the others.
Note that boosting can be seen as a functional gradient descent [Bre00, MBBF00, FHT00]
in which each added weak learner is a step in the space of classi�ers.

In our comparisons, we have used the original AdaBoost procedure [FS96a, FS96b], which
is known to su�er from over�tting. For noisy tasks, we have chosen a soft-margin version
called AdaBoostreg [ROM98]. It regularizes the classical AdaBoost by penalizing samples
which in�uence too heavily the training, as they are usually outliers.

To use boosting as a feature selector, we run the algorithm to accumulate the expected
number of features, and we then recompute the weightings with another procedure (percep-
tron or naive Bayesian).

3 Feature selection based on conditional mutual infor-

mation

3.1 Information theory tools

Information theory provides intuitive tools to quantify how much information is required to
describe random quantities, or how much information is shared by a few of them [CT91].
We consider here only �nite random variables and we denote U , V and W three of them.

The most fundamental concept in information theory is the entropy H(U) of a random
variable. Roughly, it quanti�es the average number of bits required to encode or describe the
value of U . A deterministic variable has a null entropy (as nothing is required to describe its
value, which is known by advance), while a uniform distribution on 1, . . . , 2l has an entropy
of l. If a distribution is unbalanced, it is more e�cient to use less bits to code frequent
values, even if that force to use more bits for rare values. It can be shown that

H(U) = −
∑

u

log2 (P (U = u)) P (U = u)

INRIA



CMIM feature selection 7

The conditional entropy H(U |V ) = H(U, V ) − H(V ) quanti�es the average number
of bits required to describe U , when the value of V is already known. For instance, if U is a
deterministic function of V , then this conditional entropy is null, as no more information is
required to describe U when V is known. On the contrary, if they are independent, knowing
V does not tell you anything about U and the conditional entropy is almost equal to the
entropy itself.

Our feature selection is based on the conditional mutual information:

I(U, V |W ) = H(U |W ) − H(U |W, V )

This value quanti�es how much information is shared between U and V , given the value
of W . Another way to see it, as it it decomposed above, is as the di�erence between the
information required to describe U given W , and the information to describe U given both
W and V . If V and W carry the same information about U , the two terms on the right are
equal, and the conditional mutual information is zero. On the contrary if both V and W
bring information, and if those information are complementary, the di�erence is large.

3.2 Conditional Mutual Information Maximization

The main goal of feature selection is to select a small subset of features that carries as much
information as possible. The ultimate goal would be to minimize Ĥ

(
Y |Fn(1), . . . , Fn(M)

)
.

But this expression can not be estimated with a training set of realistic size as it requires
the estimation of 2M+1 probabilities. Furthermore, even if there were ways to have an
estimation, its minimization would be computationally untractable.

At the other extreme, one could do a trivial random sampling which would ensure to some
extent independence between feature (if di�erent types of features are equally represented)
but would not at all take care of predictive power. To deal with that, one could select the
best features according to some estimate of their individual predictive power. The main
weakness of this approach is that although it takes care of individual predictive power, it
does not avoid at all redundancy among the selected features. Basically, one would pick
many similar features, as the ones carrying a lot of information are likely to be of a certain
type. For a face detection task for instance, edges on the eyebrows and the mouth would be
the only ones competitive.

We propose an intermediate solution. Our approach deals with the tradeo� between
individual power and independence by comparing each new feature with the ones already
picked. We say that a feature F ? is good only if Î(Y, F ? |F ) is high for every F already
picked. This means that F ? is good only if it carries information about Y , and if this
information has not been caught by any of the F already picked. More formally, we propose
the following iterative scheme:

n(1) = arg max
i

Î(Y, Fi)

RR n° 4941



8 Fleuret

n(k + 1) = arg max
i

{
min
l≤k

Î(Y, Fi |Fn(l))
}

By taking the minimum of the conditional mutual information on all features already
picked, we ensure that a new feature is both informative and di�erent than the preceding
ones. The computation of those scores can be done accurately as they require only the
estimation of distributions of triplets of boolean variables.

3.3 Mutual Information Maximization

To compare our approach to selection based on individual prediction power, we have also
implemented a method which picks the K features maximizing individually their mutual
information with the class to predict Î

(
Y, Fn(l)

)
. In the result sections, we call this method

MIM for Mutual Information Maximization.

3.4 Complexity

The computational costs of CMIM and AdaBoost are equivalent when the set of all available
features is �nite and remain identical at all iterations. We still denote here N the total
number of features, M the number of features we want to select, and T the size of the
training set.

Both boosting and CMIM have a main loop repeated M times, which picks feature one
after another. For each iteration of this loop, AdaBoost requires to compute a weighted
error rate for each one of the N available features, which costs O(N × T ) operations.
Learning with CMIM requires to compute the Ĥ

(
Y |Fn(k), Fi

)
, for every 1 ≤ i ≤ N where

k is the index of the last selected feature. This is true as long as we can keep a table
s[i] = minl≤k Î(Y, Fi |Fn(l)) with the current minimum value of the conditional mutual in-
formation for every weak feature of the complete set. Such a computation require also
O(N × T ) operations. Finally, both methods cost is O(M ×N × T ).

4 Experiments

4.1 Data sets

We have used training and test sets extracted from two large sets of pictures. Those original
big sets were assembled by collecting a few thousands scenes from the web and marking by
hand the locations of eyes and mouth on every visible face. From every face we generate
ten small grayscale face images by randomizing its pose. This lead to tens of thousands face
pictures. We have also collected complex scenes (forests, buildings, furnitures, etc.) from
which we have automatically extracted tens of thousands of background (non-face) pictures.
All those pictures are of size 28× 28 pixels, and quanti�ed in 256 grayscale levels. Faces
have been registered roughly, so that the center of the eyes is in a 2× 2 central square, the

INRIA



CMIM feature selection 9

Figure 1: The two upper rows show examples of background pictures, and the two lower
rows show examples of face pictures. All those images are grayscale of size 28× 28 pixels,
extracted from complete pictures taken on the WWW. Faces are roughly centered and
standardized in size.

distance between the eyes is 10 to 12 pixels and the tilt is between −10 and +10 degrees
(cf. �gure 1).

For each experiment both the training and the test sets contain 500 images, roughly as
many of which are faces and non-faces.

4.2 Edge features

We use features similar to the edge detectors in [FG01, FG02]. They are easy to compute and
robust to illumination variations. Each feature is a boolean function indexed by a location
(x, y) in the 28× 28 reference frame of the image, a direction d which can take 8 di�erent
values (cf. �gures 2 and 3) and a tolerance t which is an integer value between 1 and 7. The
tolerance corresponds to the size of the neighborhood where the edge has to be present for
the feature to be equal to 1 (cf. �gure 2). Hence, we have a set of 28× 28× 8× 7 = 43, 904
features.

4.3 Training and testing

During the training of the perceptron, coe�cients are not bound and the number of training
loops is limited to 100 iterations in the non-separable case. The coe�cients of the naive
Bayesian are computed directly as described in 2.2.

Error rates are averaged on 25 rounds for each experiment. For each round, the training
set and the test set are extracted randomly from the original large data sets (cf. �4.1).

RR n° 4941
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y
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y

x

t

Figure 2: The edge detectors we are using are crude but invariant to changes in illumination.
The picture on the left shows the criterion for a horizontal edge located in (x, y). The
detector responds if the six di�erences between pixels connected by a thin segment are lesser
in absolute value than the di�erence between the pixels connected by the thick segment. The
relative values of the two pixels connected by the thick line de�ne the polarity of the edge
(dark to light or light to dark). The picture on the right shows the neighborhood where the
edge has to be detected for a feature of tolerance t = 5 to respond.

Figure 3: The original grayscale pictures are shown on the left. The eight binary maps on
the right show the responses of the edge detectors at every locations in the 28× 28 frame,
for every one of the 8 possible directions and polarities.

INRIA



CMIM feature selection 11

Classi�er Training error Test error
AdaBoost 0% 1.45%
CMIM feature selection + Bayesian 0.52% 1.52%
CMIM feature selection + perceptron 0% 2.28%
AdaBoost feature selection + perceptron 0% 2.46%
AdaBoost feature selection + Bayesian 0.4% 3.51%
MIM feature selection + perceptron 3.56% 8.28%
MIM feature selection + Bayesian 5.58% 8.54%

Table 1: Error rates with 50 features on the accurate training set.

5 Results

5.1 Experiments with accurate training sets

The �rst round of experiments was designed to compare the performances of our methods
with two other feature selection methods (AdaBoost used as a feature selector, and MIM
which is a simple selection based on individual mutual information cf. �3.3) when the
features are combined with a perceptron. The results (cf. �gure 4 and table 1) show that as
a feature selector, AdaBoost does not perform better than our method. But if we use the
weights computed by AdaBoost itself, the global classi�er outperforms ours.

In the second round we combine the features with a naive Bayesian classi�er, instead of
a perceptron. This experiment shows that features selected by the CMIM lead to a naive
Bayesian as powerful as the AdaBoost classi�er (cf. �gure 5 and table 1).

Those results are consistent. The perceptron su�ers from its simplicity: as soon as the
null error rate is obtained on the training set, it stops, leading to worst error rate than what
maximum margin approaches could do. AdaBoost goes on maximizing the responses on
training sample even when the null error rate is reached on the training set. This maximizes
the margin between the classi�cation boundary and the training samples and generalizes
better. The result with the AdaBoost + naive Bayesian are consistent too, considering that
AdaBoost does not take care of the independence between features.

The very bad performance of the MIM criterion can be explained by looking at the
chosen features. As expected they are highly similar both in locations and direction, they
are basically all detecting the upper part of the skull.

5.2 Experiment with noisy training sets

To test the robustness of the combination of CMIM and the naive Bayesian, we did a third
round of experiments with noisy training data, known to be di�cult for boosting schemes.
We generated this training set by �ipping at random 5% of the training labels. It creates
a di�cult situation for learning methods which take care of outliers, as there is 5% of
them, distributed uniformly among the training population. Results are summarized on
�gures 6 and table 2. Both CMIM + perceptron and AdaBoost perform very badly, as

RR n° 4941
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Figure 4: The performances of the two types of feature selections combined with a perceptron
training. The curves show the error rates vs. the number of considered features. The error
on the training set is shown on the left and the errors on the test set on the right. A
perceptron built with the features selected by CMIM (thick continuous line) performs as
well as a perceptron based on the features chosen by AdaBoost (thin dash line). Still, the
pure AdaBoost reaches a better error rate (thick dash line).
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Figure 5: The performances of the two types of feature selections combined with a naive
Bayesian classi�er. The curves show the error rates vs. the number of considered features.
The error on the training set is shown on the left and the errors on the test set on the
right. The naive Bayesian based on the features selected by CMIM (thick continuous line)
performs as well as pure AdaBoost (thick dash line), and better than a naive Bayesian using
the features chosen by AdaBoost (thin dash line).
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Figure 6: Comparison of performances with a noisy training set. The curves show the error
rates vs. the number of considered features for a training set whose labels have been �ipped
with a probability 5%. The error on the training set is shown on the left and the errors
on the test set on the right. As expected, AdaBoost (dash line) over�ts and reaches a null
error rate on the training set and a high error rate on the test set. The perceptron based
on the CMIM features (continuous thin line) does bad both on training and testing, but the
same features combined with a naive Bayesian (continuous thick line) demonstrate a robust
behavior.

they are heavily in�uenced by pathological training points. On the contrary CMIM + naive
Bayesian remains almost as e�cient as with the original training set. The bad performance
of AdaBoost as a feature selection scheme combined with the naive Bayesian demonstrates
that naive Bayesian alone can not handle the �ipped training labels.

To be fair with boosting, we made a fourth round of experiments with AdaBoostreg. The
experiment is the same as before, but is repeated for various values of the regularization
parameter C. The error rates given in table 2 correspond to the C leading to the best test
error rate.

6 Conclusion

We have presented in this article a simple scheme for binary feature selection in a context
of classi�cation. Combined with a naive Bayesian classi�er, those features lead to perfor-
mances as good as those obtained with the classical AdaBoost on clean data, and to better
performances on noisy data, even compared to a regularized AdaBoost which requires the
tuning of a regularization parameter.

The strong points of CMIM are:

RR n° 4941



14 Fleuret

Classi�er Training error Test error
CMIM feature selection + Bayesian 5.06% 1.95%
AdaBoostreg (optimal) 3.8% 3.06%
AdaBoost 0.58% 6.33%
MIM feature selection + Bayesian 9.47% 8.59%
CMIM feature selection + perceptron 7.36% 9.32%
AdaBoost feature selection + Bayesian 10.28% 9.46%
MIM feature selection + perceptron 11.53% 13.12%

Table 2: Error rates with 50 features on the noisy training set whose labels have been �ipped
with probability 5%.

� It is robust, as it requires only estimations of distributions of triplets of boolean vari-
ables ;

� it provides a good tradeo� between redundancy and individual power of selected fea-
tures;

� it selects features that can be combined with the naive Bayesian classi�er, which is an
explicit and robust scheme.

Nevertheless, CMIM su�ers from three main drawbacks:

� It is usable only with a �nite set of binary features, and restricted to classi�cation ;

� it works under the assumption that dependencies between features can be caught by
looking at couples of variables, thus ignoring dependencies between triplets or larger
families of features ;

� its complexity can be an issue for very large families of features and training sets.

Note that AdaBoost su�ers from similar weaknesses: it works only if dependency between
the errors of the classi�er built so far and at least one of the weak learner can be spotted,
and its complexity is similar.

The forthcoming works will address some of those issues. For instance, the approach
could probably be extended from binary features and classi�cation to continuous features
and regression by considering parametric density models.
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