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Until now, we have dealt with image sets that could fit in memory, and we
manipulated them as regular tensors, e.g.

train_set = torchvision.datasets.MNIST('./data/mnist/',
train = True, download = True)

train_input = train_set.data.view(-1, 1, 28, 28).float()
train_targets = train_set.targets
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Until now, we have dealt with image sets that could fit in memory, and we
manipulated them as regular tensors, e.g.

train_set = torchvision.datasets.MNIST('./data/mnist/',

train = True, download = True)
train_input = train_set.data.view(-1, 1, 28, 28).float()
train_targets = train_set.targets

However, large sets do not fit in memory, and samples have to be constantly
loaded during training.

This require a [sophisticated] machinery to parallelize the loading itself, but also
the normalization, and data-augmentation operations.
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PyTorch offers the torch.utils.data.Dataloader object which combines a
data-set and a sampling policy to create an iterator over mini-batches.

Standard data-sets are available in torchvision.datasets, and they allow to
apply transformations over the images or the labels transparently.
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PyTorch offers the torch.utils.data.Dataloader object which combines a
data-set and a sampling policy to create an iterator over mini-batches.

Standard data-sets are available in torchvision.datasets, and they allow to
apply transformations over the images or the labels transparently.

If needed, torchvision.datasets.ImageFolder creates a data-set from files

located in a folder, and torch.utils.data.TensorDataset from a tensor.
The latter is useful for synthetic toy examples or small data-sets.
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from torch.utils.data import Dataloader
from torchvision import datasets, transforms

train_transforms = transforms.Compose(
[
transforms.ToTensor (),
transforms.Normalize(mean = (0.1302,), std = (0.3069, ))

train_loader = DataLoader(
datasets.MNIST(root = './data/mnist', train = True, download = True,
transform = train_transforms),
batch_size = 100,
num_workers = 4,
shuffle = True,
pin_memory = torch.cuda.is_available()
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Given this train_loader, we can now re-write our training procedure with a
loop over the mini-batches

for e in range(nb_epochs):
for input, target in iter(train_loader):

input, target = input.to(device), target.to(device)

output = model (input)
loss = criterion(output, target)

model.zero_grad()

loss.backward ()
optimizer.step()
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Example of neuro-surgery and fine-tuning in PyTorch
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As an example of re-using a network and fine-tuning it, we will construct a
network for CIFAR10 composed of:

« the first layer of an [already trained] AlexNet,
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As an example of re-using a network and fine-tuning it, we will construct a
network for CIFAR10 composed of:

« the first layer of an [already trained] AlexNet,
o several resnet blocks,
e a final channel-wise averaging, using nn.AvgPool2d, and

e a final fully connected linear layer nn.Linear.
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As an example of re-using a network and fine-tuning it, we will construct a
network for CIFAR10 composed of:

« the first layer of an [already trained] AlexNet,
o several resnet blocks,
e a final channel-wise averaging, using nn.AvgPool2d, and

e a final fully connected linear layer nn.Linear.

During training, we keep the AlexNet features frozen for a few epochs. This is
done by setting requires_grad of the related Parameters to False.
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data_dir = os.environ.get('PYTORCH_DATA_DIR') or './data/cifar10/'

num_workers = 4
batch_size = 64

transform = torchvision.transforms.ToTensor ()

train_set = datasets.CIFAR10(root = data_dir, train = True,
download = True, transform = transform)

train_loader = utils.data.DatalLoader(train_set, batch_size = batch_size,
shuffle = True, num_workers = num_workers)

test_set = datasets.CIFAR10(root = data_dir, train = False,
download = True, transform = transform)

test_loader = utils.data.Dataloader(test_set, batch_size = batch_size,
shuffle = False, num_workers = num_workers)
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class ResBlock(nn.Module):
def __init__(self, nb_channels, kernel_size):
super (ResBlock, self).__init__()

self.convl = nn.Conv2d(nb_channels, nb_channels, kernel_size,
padding = (kernel_size-1)//2)
self.bnl = nn.BatchNorm2d(nb_channels)

self.conv2 = nn.Conv2d(nb_channels, nb_channels, kernel_size,
padding = (kernel_size-1)//2)
self.bn2 = nn.BatchNorm2d(nb_channels)

def forward(self, x):

y = self.bni(self.convi(x))
y = F.relu(y)

y = self.bn2(self.conv2(y))
yo+=x

y = F.relu(y)

return y
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class Monster(nn.Module) :
def __init__(self, nb_blocks, nb_channels):
super (Monster, self).__init__()

nb_alexnet_channels = 64
alexnet_feature_map_size = 7 # For 32x32 (e.g. CIFAR)

alexnet = torchvision.models.alexnet(pretrained = True)

self.features = nn.Sequential(
alexnet.features[0],
nn.ReLU(inplace = True)

)
self.conv0 = nn.Conv2d(nb_alexnet_channels, nb_channels, kernel_size = 1)

self.resblocks = nn.Sequential(
# A bit of fancy Python
* (ResBlock(nb_channels, kernel_size = 3) for _ in range(nb_blocks))

)

self.avg = nn.AvgPool2d(kernel_size = alexnet_feature_map_size)
self.fc = nn.Linear(nb_channels, 10)
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def freeze_features(self, q):
for p in self.features.parameters():
# q = True means that it is frozen and we do NOT need the gradient
p.requires_grad = not q

def forward(self, x):

= self.features(x)

= F.relu(self.conv0(x))
self.resblocks (x)
F.relu(self.avg(x))
x.view(x.size(0), -1)
self.fc(x)

return x

X
X
X
X
X
X
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nb_epochs = 50
nb_blocks, nb_channels = 8, 64

model, criterion = Monster(nb_blocks, nb_channels), nn.CrossEntropyLoss()

model.to(device)
criterion.to(device)

optimizer = torch.optim.Adam(model.parameters(), lr = le-2)
for e in range(nb_epochs):
model.freeze_features(e < nb_epochs // 2)

acc_loss = 0.0

for input, target in iter(train_loader):
input, target = input.to(device), target.to(device)

output = model(input)

loss = criterion(output, target)
acc_loss += loss.item()
optimizer.zero_grad()
loss.backward()

optimizer.step()

print(e, acc_loss)
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nb_test_errors, nb_test_samples = 0, 0
model.train(False)

for input, target in iter(test_loader):
input, target = input.to(device), target.to(device)

output = model (input)
wta = torch.argmax(output.data, 1).view(-1)

for i in range(0, target.size(0)):
nb_test_samples += 1
if wtal[i] != target[il: nb_test_errors += 1

print ('test_error {:.02f}), ({:d}/{:d})'.format(
100 * nb_test_errors / nb_test_samples,
nb_test_errors,
nb_test_samples)
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The end
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