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If we use an autoregressive model with a masked input

f : {0, 1}T × RT → RC

the input differs from a position to another.

During training, even though the full input is known, common computation is
lost.

François Fleuret EE-559 – Deep learning / 10.2. Causal convolutions 1 / 25



We can avoid having the mask itself as input if the model predicts a distribution
for every position of the sequence, that is

f : RT → RT×C .

It can be used for synthesis with

x1 ← sample (f1(0, . . . , 0))

x2 ← sample (f2(x1, 0, . . . , 0))

x3 ← sample (f3(x1, x2, 0, . . . , 0))

. . .

xT ← sample (fT (x1, x2, . . . , xT−1, 0))

where the 0s simply fill in for unknown values.
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If additionally, the model is such that “future values” do not influence the
prediction at a certain time, that is

∀t, x1, . . . , xt , α1, . . . , αT−t , β1, . . . , βT−t ,

ft+1(x1, . . . , xt , α1, . . . , αT−t) = ft+1(x1, . . . , xt , β1, . . . , βT−t)

then, we have in particular

f1(0, . . . , 0) = f1(x1, . . . , xT )

f2(x1, 0, . . . , 0) = f2(x1, . . . , xT )

f3(x1, x2, 0, . . . , 0) = f3(x1, . . . , xT )

. . .

fT (x1, x2, . . . , xT−1, 0) = fT (x1, . . . , xT )
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Which provides a tremendous computational advantage during training, since

l(f , x) =
∑
u

l(fu(x1, . . . , xu−1, 0, . . . , 0), xu)

=
∑
u

l(fu(x1, . . . , xT )︸ ︷︷ ︸
Computed once

, xu).

Such models are referred to as causal, since the future cannot affect the past.
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We can illustrate this with convolutional models. Standard convolutions let
information flow “to the past,” and masked input was a way to condition only
on already generated values.
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Such a model can be made causal with convolutions that let information flow
only to the future, combined with a first convolution that hides the present.
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Another option for the first layer is to shift the input by one entry to hide the
present.

x1 x2 x3 x4 x50 0 0

Padded-shifted right

0 0

x1 x2 x3 x4 x5 x6

Padding
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PyTorch’s convolutional layers do no accept asymmetric padding, but we can do
it with F.pad, which even accepts negative padding to remove entries.

For a n-dim tensor, the padding specification is

(startn, endn, startn−1, endn−1, . . . , startn−k , endn−k )

>>> x = torch.randint(10, (2, 1, 5))
>>> x
tensor([[[1, 6, 3, 9, 1]],

[[4, 8, 2, 2, 9]]])
>>> F.pad(x, (-1, 1))
tensor([[[6, 3, 9, 1, 0]],

[[8, 2, 2, 9, 0]]])

>>> F.pad(x, (0, 0, 2, 0))
tensor([[[0, 0, 0, 0, 0],

[0, 0, 0, 0, 0],
[1, 6, 3, 9, 1]],

[[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[4, 8, 2, 2, 9]]])

Similar processing can be achieved with the modules nn.ConstantPad1d,
nn.ConstantPad2d, or nn.ConstantPad3d.
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Some train sequences
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Model

class NetToy1d(nn.Module):
def __init__(self, nb_classes, ks = 2, nc = 32):

super(NetToy1d, self).__init__()
self.pad = (ks - 1, 0)
self.conv0 = nn.Conv1d(1, nc, kernel_size = 1)
self.conv1 = nn.Conv1d(nc, nc, kernel_size = ks)
self.conv2 = nn.Conv1d(nc, nc, kernel_size = ks)
self.conv3 = nn.Conv1d(nc, nc, kernel_size = ks)
self.conv4 = nn.Conv1d(nc, nc, kernel_size = ks)
self.conv5 = nn.Conv1d(nc, nb_classes, kernel_size = 1)

def forward(self, x):
x = F.relu(self.conv0(F.pad(x, (1, -1))))
x = F.relu(self.conv1(F.pad(x, self.pad)))
x = F.relu(self.conv2(F.pad(x, self.pad)))
x = F.relu(self.conv3(F.pad(x, self.pad)))
x = F.relu(self.conv4(F.pad(x, self.pad)))
x = self.conv5(x)
return x.permute(0, 2, 1).contiguous()
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Training loop

for sequences in train_input.split(args.batch_size):
input = (sequences - mean)/std

output = model(input)

loss = cross_entropy(
output.view(-1, output.size(-1)),
sequences.view(-1)

)

optimizer.zero_grad()
loss.backward()
optimizer.step()
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Synthesis

generated = train_input.new_zeros((48,) + train_input.size()[1:])

flat = generated.view(generated.size(0), -1)

for t in range(flat.size(1)):
input = (generated.float() - mean) / std
output = model(input)
logits = output.view(flat.size() + (-1,))[:, t]
dist = torch.distributions.categorical.Categorical(logits = logits)
flat[:, t] = dist.sample()
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Some generated sequences
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The global structure may not be properly generated.
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This can be fixed with dilated convolutions to have a larger context.
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This can be fixed with dilated convolutions to have a larger context.
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Model

class NetToy1dWithDilation(nn.Module):
def __init__(self, nb_classes, ks = 2, nc = 32):

super(NetToy1dWithDilation, self).__init__()
self.conv0 = nn.Conv1d(1, nc, kernel_size = 1)
self.pad1 = ((ks-1) * 2, 0)
self.conv1 = nn.Conv1d(nc, nc, kernel_size = ks, dilation = 2)
self.pad2 = ((ks-1) * 4, 0)
self.conv2 = nn.Conv1d(nc, nc, kernel_size = ks, dilation = 4)
self.pad3 = ((ks-1) * 8, 0)
self.conv3 = nn.Conv1d(nc, nc, kernel_size = ks, dilation = 8)
self.pad4 = ((ks-1) * 16, 0)
self.conv4 = nn.Conv1d(nc, nc, kernel_size = ks, dilation = 16)
self.conv5 = nn.Conv1d(nc, nb_classes, kernel_size = 1)

def forward(self, x):
x = F.relu(self.conv0(F.pad(x, (1, -1))))
x = F.relu(self.conv1(F.pad(x, self.pad2)))
x = F.relu(self.conv2(F.pad(x, self.pad3)))
x = F.relu(self.conv3(F.pad(x, self.pad4)))
x = F.relu(self.conv4(F.pad(x, self.pad5)))
x = self.conv5(x)
return x.permute(0, 2, 1).contiguous()
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Some generated sequences
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The WaveNet model proposed by Oord et al. (2016a) for voice synthesis relies
in large part on such an architecture.

Because models with causal convolutions do not have recurrent connections, they are typically faster
to train than RNNs, especially when applied to very long sequences. One of the problems of causal
convolutions is that they require many layers, or large filters to increase the receptive field. For
example, in Fig. 2 the receptive field is only 5 (= #layers + filter length - 1). In this paper we use
dilated convolutions to increase the receptive field by orders of magnitude, without greatly increasing
computational cost.

A dilated convolution (also called à trous, or convolution with holes) is a convolution where the
filter is applied over an area larger than its length by skipping input values with a certain step. It is
equivalent to a convolution with a larger filter derived from the original filter by dilating it with zeros,
but is significantly more efficient. A dilated convolution effectively allows the network to operate on
a coarser scale than with a normal convolution. This is similar to pooling or strided convolutions, but
here the output has the same size as the input. As a special case, dilated convolution with dilation
1 yields the standard convolution. Fig. 3 depicts dilated causal convolutions for dilations 1, 2, 4,
and 8. Dilated convolutions have previously been used in various contexts, e.g. signal processing
(Holschneider et al., 1989; Dutilleux, 1989), and image segmentation (Chen et al., 2015; Yu &
Koltun, 2016).

Input

Hidden Layer
Dilation = 1

Hidden Layer
Dilation = 2

Hidden Layer
Dilation = 4

Output
Dilation = 8

Figure 3: Visualization of a stack of dilated causal convolutional layers.

Stacked dilated convolutions enable networks to have very large receptive fields with just a few lay-
ers, while preserving the input resolution throughout the network as well as computational efficiency.
In this paper, the dilation is doubled for every layer up to a limit and then repeated: e.g.

1, 2, 4, . . . , 512, 1, 2, 4, . . . , 512, 1, 2, 4, . . . , 512.

The intuition behind this configuration is two-fold. First, exponentially increasing the dilation factor
results in exponential receptive field growth with depth (Yu & Koltun, 2016). For example each
1, 2, 4, . . . , 512 block has receptive field of size 1024, and can be seen as a more efficient and dis-
criminative (non-linear) counterpart of a 1×1024 convolution. Second, stacking these blocks further
increases the model capacity and the receptive field size.

2.2 SOFTMAX DISTRIBUTIONS

One approach to modeling the conditional distributions p (xt | x1, . . . , xt−1) over the individual
audio samples would be to use a mixture model such as a mixture density network (Bishop, 1994)
or mixture of conditional Gaussian scale mixtures (MCGSM) (Theis & Bethge, 2015). However,
van den Oord et al. (2016a) showed that a softmax distribution tends to work better, even when the
data is implicitly continuous (as is the case for image pixel intensities or audio sample values). One
of the reasons is that a categorical distribution is more flexible and can more easily model arbitrary
distributions because it makes no assumptions about their shape.

Because raw audio is typically stored as a sequence of 16-bit integer values (one per timestep), a
softmax layer would need to output 65,536 probabilities per timestep to model all possible values.
To make this more tractable, we first apply a µ-law companding transformation (ITU-T, 1988) to
the data, and then quantize it to 256 possible values:

f (xt) = sign(xt)
ln (1 + µ |xt|)

ln (1 + µ)
,

3

(Oord et al., 2016a)
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Causal convolutions for images
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The same mechanism can be implemented for images, using causal convolution:

0 255 1 1 1 1 1

1 1 1 1 1

1 1 0 0 0

0 0 0

0 0 0

0

0

0

0

Blind spot

Horizontal stack

Vertical stack

Figure 1: Left: A visualization of the PixelCNN that maps a neighborhood of pixels to prediction for
the next pixel. To generate pixel xi the model can only condition on the previously generated pixels
x1, . . . xi−1. Middle: an example matrix that is used to mask the 5x5 filters to make sure the model
cannot read pixels below (or strictly to the right) of the current pixel to make its predictions. Right:
Top: PixelCNNs have a blind spot in the receptive field that can not be used to make predictions.
Bottom: Two convolutional stacks (blue and purple) allow to capture the whole receptive field.

combine the strengths of both models by introducing a gated variant of PixelCNN (Gated PixelCNN)
that matches the log-likelihood of PixelRNN on both CIFAR and ImageNet, while requiring less than
half the training time.

We also introduce a conditional variant of the Gated PixelCNN (Conditional PixelCNN) that allows
us to model the complex conditional distributions of natural images given a latent vector embedding.
We show that a single Conditional PixelCNN model can be used to generate images from diverse
classes such as dogs, lawn mowers and coral reefs, by simply conditioning on a one-hot encoding
of the class. Similarly one can use embeddings that capture high level information of an image to
generate a large variety of images with similar features. This gives us insight into the invariances
encoded in the embeddings — e.g., we can generate different poses of the same person based on a
single image. The same framework can also be used to analyse and interpret different layers and
activations in deep neural networks.

2 Gated PixelCNN

PixelCNNs (and PixelRNNs) [30] model the joint distribution of pixels over an image x as the
following product of conditional distributions, where xi is a single pixel:

p(x) =

n2∏

i=1

p(xi|x1, ..., xi−1). (1)

The ordering of the pixel dependencies is in raster scan order: row by row and pixel by pixel within
every row. Every pixel therefore depends on all the pixels above and to the left of it, and not on any
of other pixels. The dependency field of a pixel is visualized in Figure 1 (left).

A similar setup has been used by other autoregressive models such as NADE [14] and RIDE [26].
The difference lies in the way the conditional distributions p(xi|x1, ..., xi−1) are constructed. In
PixelCNN every conditional distribution is modelled by a convolutional neural network. To make
sure the CNN can only use information about pixels above and to the left of the current pixel, the
filters of the convolution are masked as shown in Figure 1 (middle). For each pixel the three colour
channels (R, G, B) are modelled successively, with B conditioned on (R, G), and G conditioned on R.
This is achieved by splitting the feature maps at every layer of the network into three and adjusting the
centre values of the mask tensors. The 256 possible values for each colour channel are then modelled
using a softmax.

PixelCNN typically consists of a stack of masked convolutional layers that takes an N x N x 3 image
as input and produces N x N x 3 x 256 predictions as output. The use of convolutions allows the
predictions for all the pixels to be made in parallel during training (all conditional distributions from
Equation 1). During sampling the predictions are sequential: every time a pixel is predicted, it is

2

(Oord et al., 2016b)
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ks = 5
hpad = (ks//2, ks//2, ks//2, 0)
conv1h = nn.Conv2d(1, 1, kernel_size = (ks//2+1, ks))
conv2h = nn.Conv2d(1, 1, kernel_size = (ks//2+1, ks))
vpad = (ks//2, 0, 0, 0)
conv1v = nn.Conv2d(1, 1, kernel_size = (1, ks//2+1))
conv2v = nn.Conv2d(1, 1, kernel_size = (1, ks//2+1))

x = F.pad(x, (0,0,1,-1))

x = conv1h(F.pad(x, hpad))

x = conv2h(F.pad(x, hpad))

x = F.pad(x, (1,-1,0,0))

x = conv1v(F.pad(x, vpad))

x = conv2v(F.pad(x, vpad))
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class PixelCNN(nn.Module):
def __init__(self, nb_classes, in_channels = 1, ks = 5):

super(PixelCNN, self).__init__()

self.hpad = (ks//2, ks//2, ks//2, 0)
self.vpad = (ks//2, 0, 0, 0)

self.conv1h = nn.Conv2d(in_channels, 32, kernel_size = (ks//2+1, ks))
self.conv2h = nn.Conv2d(32, 64, kernel_size = (ks//2+1, ks))
self.conv1v = nn.Conv2d(in_channels, 32, kernel_size = (1, ks//2+1))
self.conv2v = nn.Conv2d(32, 64, kernel_size = (1, ks//2+1))
self.final1 = nn.Conv2d(128, 128, kernel_size = 1)
self.final2 = nn.Conv2d(128, nb_classes, kernel_size = 1)

def forward(self, x):
xh = F.pad(x, (0, 0, 1, -1))
xv = F.pad(x, (1, -1, 0, 0))
xh = F.relu(self.conv1h(F.pad(xh, self.hpad)))
xv = F.relu(self.conv1v(F.pad(xv, self.vpad)))
xh = F.relu(self.conv2h(F.pad(xh, self.hpad)))
xv = F.relu(self.conv2v(F.pad(xv, self.vpad)))
x = F.relu(self.final1(torch.cat((xh, xv), 1)))
x = self.final2(x)

return x.permute(0, 2, 3, 1).contiguous()
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Some generated images
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Such a fully convolutional model has no way to make the prediction
position-dependent, which results here in local consistency, but fragmentation.

A classical fix is to supplement the input with a positional encoding, that is a
multi-channel input that provides full information about the location.

Here with a resolution of 28× 28 we can encode the positions with 5 Boolean
channels per coordinate.
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Input tensor with
positional encoding
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Some generated images
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The end
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