
Deep learning

8.5. DataLoader and neuro-surgery

François Fleuret

https://fleuret.org/dlc/

https://fleuret.org/dlc/

torch.utils.data.DataLoader

François Fleuret Deep learning / 8.5. DataLoader and neuro-surgery 1 / 13

Until now, we have dealt with image sets that could fit in memory, and we
manipulated them as regular tensors, e.g.

train_set = torchvision.datasets.MNIST(root = data_dir,
train = True, download = True)

train_input = train_set.data.view(-1, 1, 28, 28).float()
train_targets = train_set.targets

However, large sets do not fit in memory, and samples have to be constantly
loaded during training.

ImageNet LSVRC 2012 Images 151Gb

LSUN (all classes) Images 1.7Tb

OSCAR Text 6Tb

This requires a [sophisticated] machinery to parallelize the loading itself, but
also the normalization, and data-augmentation operations.

François Fleuret Deep learning / 8.5. DataLoader and neuro-surgery 2 / 13

Until now, we have dealt with image sets that could fit in memory, and we
manipulated them as regular tensors, e.g.

train_set = torchvision.datasets.MNIST(root = data_dir,
train = True, download = True)

train_input = train_set.data.view(-1, 1, 28, 28).float()
train_targets = train_set.targets

However, large sets do not fit in memory, and samples have to be constantly
loaded during training.

ImageNet LSVRC 2012 Images 151Gb

LSUN (all classes) Images 1.7Tb

OSCAR Text 6Tb

This requires a [sophisticated] machinery to parallelize the loading itself, but
also the normalization, and data-augmentation operations.

François Fleuret Deep learning / 8.5. DataLoader and neuro-surgery 2 / 13

PyTorch offers the torch.utils.data.DataLoader object which combines a
data-set and a sampling policy to create an iterator over mini-batches.

Standard data-sets are available in torchvision.datasets, and they allow to
apply transformations over the images or the labels transparently.

If needed, torchvision.datasets.ImageFolder creates a data-set from files
located in a folder, and torch.utils.data.TensorDataset from a tensor.
The latter is useful for synthetic toy examples or small data-sets.

François Fleuret Deep learning / 8.5. DataLoader and neuro-surgery 3 / 13

PyTorch offers the torch.utils.data.DataLoader object which combines a
data-set and a sampling policy to create an iterator over mini-batches.

Standard data-sets are available in torchvision.datasets, and they allow to
apply transformations over the images or the labels transparently.

If needed, torchvision.datasets.ImageFolder creates a data-set from files
located in a folder, and torch.utils.data.TensorDataset from a tensor.
The latter is useful for synthetic toy examples or small data-sets.

François Fleuret Deep learning / 8.5. DataLoader and neuro-surgery 3 / 13

from torch.utils.data import DataLoader
from torchvision import datasets, transforms

data_dir = os.environ.get('PYTORCH_DATA_DIR') or './data/mnist/'

train_transforms = transforms.Compose(
[

transforms.ToTensor(),
transforms.Normalize(mean = (0.1302,), std = (0.3069,))

]
)

train_loader = DataLoader(
datasets.MNIST(root = data_dir, train = True, download = True,

transform = train_transforms),
batch_size = 100,
num_workers = 4,
shuffle = True,
pin_memory = torch.cuda.is_available()

)

François Fleuret Deep learning / 8.5. DataLoader and neuro-surgery 4 / 13

Given this train_loader, we can now re-write our training procedure with a
loop over the mini-batches

for e in range(nb_epochs):
for input, targets in iter(train_loader):

input, targets = input.to(device), targets.to(device)

output = model(input)
loss = criterion(output, targets)

model.zero_grad()
loss.backward()
optimizer.step()

François Fleuret Deep learning / 8.5. DataLoader and neuro-surgery 5 / 13

Example of neuro-surgery and fine-tuning in PyTorch

François Fleuret Deep learning / 8.5. DataLoader and neuro-surgery 6 / 13

As an example of re-using a network and fine-tuning it, we will construct a
network for CIFAR10 composed of:

• the first layer of an [already trained] AlexNet,

• several resnet blocks,

• a final channel-wise averaging, using nn.AvgPool2d, and

• a final fully connected linear layer nn.Linear.

During training, we will keep the AlexNet features frozen for a few epochs. This
is done by setting requires_grad of the related Parameters to False.

François Fleuret Deep learning / 8.5. DataLoader and neuro-surgery 7 / 13

As an example of re-using a network and fine-tuning it, we will construct a
network for CIFAR10 composed of:

• the first layer of an [already trained] AlexNet,

• several resnet blocks,

• a final channel-wise averaging, using nn.AvgPool2d, and

• a final fully connected linear layer nn.Linear.

During training, we will keep the AlexNet features frozen for a few epochs. This
is done by setting requires_grad of the related Parameters to False.

François Fleuret Deep learning / 8.5. DataLoader and neuro-surgery 7 / 13

As an example of re-using a network and fine-tuning it, we will construct a
network for CIFAR10 composed of:

• the first layer of an [already trained] AlexNet,

• several resnet blocks,

• a final channel-wise averaging, using nn.AvgPool2d, and

• a final fully connected linear layer nn.Linear.

During training, we will keep the AlexNet features frozen for a few epochs. This
is done by setting requires_grad of the related Parameters to False.

François Fleuret Deep learning / 8.5. DataLoader and neuro-surgery 7 / 13

As an example of re-using a network and fine-tuning it, we will construct a
network for CIFAR10 composed of:

• the first layer of an [already trained] AlexNet,

• several resnet blocks,

• a final channel-wise averaging, using nn.AvgPool2d, and

• a final fully connected linear layer nn.Linear.

During training, we will keep the AlexNet features frozen for a few epochs. This
is done by setting requires_grad of the related Parameters to False.

François Fleuret Deep learning / 8.5. DataLoader and neuro-surgery 7 / 13

As an example of re-using a network and fine-tuning it, we will construct a
network for CIFAR10 composed of:

• the first layer of an [already trained] AlexNet,

• several resnet blocks,

• a final channel-wise averaging, using nn.AvgPool2d, and

• a final fully connected linear layer nn.Linear.

During training, we will keep the AlexNet features frozen for a few epochs. This
is done by setting requires_grad of the related Parameters to False.

François Fleuret Deep learning / 8.5. DataLoader and neuro-surgery 7 / 13

data_dir = os.environ.get('PYTORCH_DATA_DIR') or './data/cifar10/'

num_workers = 4
batch_size = 64

transform = torchvision.transforms.ToTensor()

train_set = datasets.CIFAR10(root = data_dir, train = True,
download = True, transform = transform)

train_loader = utils.data.DataLoader(train_set, batch_size = batch_size,
shuffle = True, num_workers = num_workers)

test_set = datasets.CIFAR10(root = data_dir, train = False,
download = True, transform = transform)

test_loader = utils.data.DataLoader(test_set, batch_size = batch_size,
shuffle = False, num_workers = num_workers)

François Fleuret Deep learning / 8.5. DataLoader and neuro-surgery 8 / 13

class ResBlock(nn.Module):
def __init__(self, nb_channels, kernel_size):

super().__init__()

self.conv1 = nn.Conv2d(nb_channels, nb_channels, kernel_size,
padding = (kernel_size-1)//2)

self.bn1 = nn.BatchNorm2d(nb_channels)

self.conv2 = nn.Conv2d(nb_channels, nb_channels, kernel_size,
padding = (kernel_size-1)//2)

self.bn2 = nn.BatchNorm2d(nb_channels)

def forward(self, x):
y = self.bn1(self.conv1(x))
y = F.relu(y)
y = self.bn2(self.conv2(y))
y += x
y = F.relu(y)
return y

François Fleuret Deep learning / 8.5. DataLoader and neuro-surgery 9 / 13

class Monster(nn.Module):
def __init__(self, nb_blocks, nb_channels):

super().__init__()

alexnet = torchvision.models.alexnet(weights = 'IMAGENET1K_V1')

self.features = nn.Sequential(alexnet.features[0], nn.ReLU(inplace = True))

dummy = self.features(torch.zeros(1, 3, 32, 32)).size()
alexnet_nb_channels = dummy[1]
alexnet_map_size = tuple(dummy[2:4])

self.conv = nn.Conv2d(alexnet_nb_channels, nb_channels, kernel_size = 1)

self.resblocks = nn.Sequential(
*(ResBlock(nb_channels, kernel_size = 3) for _ in range(nb_blocks))

)

self.avg = nn.AvgPool2d(kernel_size = alexnet_map_size)
self.fc = nn.Linear(nb_channels, 10)

François Fleuret Deep learning / 8.5. DataLoader and neuro-surgery 10 / 13

def forward(self, x):
x = self.features(x)
x = F.relu(self.conv(x))
x = self.resblocks(x)
x = F.relu(self.avg(x))
x = x.view(x.size(0), -1)
x = self.fc(x)
return x

François Fleuret Deep learning / 8.5. DataLoader and neuro-surgery 11 / 13

nb_epochs = 50
nb_blocks, nb_channels = 8, 64

model, criterion = Monster(nb_blocks, nb_channels), nn.CrossEntropyLoss()

model.to(device)
criterion.to(device)

optimizer = torch.optim.Adam(model.parameters(), lr = 1e-2)

for e in range(nb_epochs):
Freeze the features during half of the epochs
for p in model.features.parameters():

p.requires_grad = e >= nb_epochs // 2

acc_loss = 0.0

for input, targets in iter(train_loader):
input, targets = input.to(device), targets.to(device)

output = model(input)
loss = criterion(output, targets)
acc_loss += loss.item()

optimizer.zero_grad()
loss.backward()
optimizer.step()

print(e, acc_loss)

François Fleuret Deep learning / 8.5. DataLoader and neuro-surgery 12 / 13

nb_test_errors, nb_test_samples = 0, 0

model.eval()

for input, targets in iter(test_loader):
input, targets = input.to(device), targets.to(device)

output = model(input)
wta = torch.argmax(output.data, 1).view(-1)

for i in range(targets.size(0)):
nb_test_samples += 1
if wta[i] != targets[i]: nb_test_errors += 1

test_error = 100 * nb_test_errors / nb_test_samples
print(f'test_error {test_error:.02f}% ({nb_test_errors}/{nb_test_samples})')

François Fleuret Deep learning / 8.5. DataLoader and neuro-surgery 13 / 13

The end

	torch.utils.data.DataLoader
	Example of neuro-surgery and fine-tuning in PyTorch

