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Many applications such as image synthesis, denoising, super-resolution, speech
synthesis, compression, etc. require to go beyond classification and regression,
and model explicitly a high dimension signal.

This modeling consists of finding “meaningful degrees of freedom” that describe
the signal, and are of lesser dimension.
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When dealing with real-world signals, this objective involves the same
theoretical and practical issues as for classification or regression: defining the
right class of high-dimension models, and optimizing them.

This motivates the use of deep architectures for signal synthesis.
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Autoencoders
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An autoencoder maps a space to itself and is [close to] the identity on the data.

Dimension reduction can be achieved with an autoencoder composed of an
encoder f from the original space 𝒳 to a latent space ℱ , and a decoder g to
map back to 𝒳 (Bourlard and Kamp, 1988; Hinton and Zemel, 1994).

Original space 𝒳

Latent space ℱ

f

g

If the latent space is of lower dimension, the autoencoder has to capture a
“good” parametrization, and in particular dependencies between components.
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Let q be the data distribution over 𝒳 . A good autoencoder could be
characterized with the quadratic loss

EX∼q

[
∥X − g ◦ f (X )∥2

]
≃ 0.

Given two parametrized mappings f (· ;wf ) and g(· ;wg ), training consists of
minimizing an empirical estimate of that loss

ŵf , ŵg = argmin
wf ,wg

1

N

N∑
n=1

∥xn − g(f (xn;wf );wg )∥2 .

A simple example of such an autoencoder would be with both f and g linear, in
which case the optimal solution is given by PCA. Better results can be achieved
with more sophisticated classes of mappings, in particular deep architectures.
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Deep Autoencoders
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A deep autoencoder combines an encoder composed of convolutional layers,
with a decoder composed of transposed convolutions or other interpolating
layers. E.g. for MNIST:

AutoEncoder (
(encoder): Sequential (

(0): Conv2d(1, 32, kernel_size=(5, 5), stride=(1, 1))
(1): ReLU (inplace)
(2): Conv2d(32, 32, kernel_size=(5, 5), stride=(1, 1))
(3): ReLU (inplace)
(4): Conv2d(32, 32, kernel_size=(4, 4), stride=(2, 2))
(5): ReLU (inplace)
(6): Conv2d(32, 32, kernel_size=(3, 3), stride=(2, 2))
(7): ReLU (inplace)
(8): Conv2d(32, 8, kernel_size=(4, 4), stride=(1, 1))

)
(decoder): Sequential (

(0): ConvTranspose2d(8, 32, kernel_size=(4, 4), stride=(1, 1))
(1): ReLU (inplace)
(2): ConvTranspose2d(32, 32, kernel_size=(3, 3), stride=(2, 2))
(3): ReLU (inplace)
(4): ConvTranspose2d(32, 32, kernel_size=(4, 4), stride=(2, 2))
(5): ReLU (inplace)
(6): ConvTranspose2d(32, 32, kernel_size=(5, 5), stride=(1, 1))
(7): ReLU (inplace)
(8): ConvTranspose2d(32, 1, kernel_size=(5, 5), stride=(1, 1))

)
)
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Encoder

Tensor sizes / operations

1×28×28

nn.Conv2d(1, 32, kernel_size=5, stride=1)
28

×2432×24×24

nn.Conv2d(32, 32, kernel_size=5, stride=1)
24

×2032×20×20

nn.Conv2d(32, 32, kernel_size=4, stride=2)
20

×932×9×9

nn.Conv2d(32, 32, kernel_size=3, stride=2)
9

×432×4×4

nn.Conv2d(32, 8, kernel_size=4, stride=1)
4

×18×1×1
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Decoder

Tensor sizes / operations

8×1×1

nn.ConvTranspose2d(8, 32, kernel_size=4, stride=1)
×1

432×4×4

nn.ConvTranspose2d(32, 32, kernel_size=3, stride=2)
×4

932×9×9

nn.ConvTranspose2d(32, 32, kernel_size=4, stride=2)
×9

2032×20×20

nn.ConvTranspose2d(32, 32, kernel_size=5, stride=1)
×20

2432×24×24

nn.ConvTranspose2d(32, 1, kernel_size=5, stride=1)
×24

281×28×28
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Training is achieved with quadratic loss and Adam

model = AutoEncoder(nb_channels, embedding_dim)

optimizer = optim.Adam(model.parameters(), lr = 1e-3)

for epoch in range(args.nb_epochs):
for input in train_input.split(batch_size):

z = model.encode(input)
output = model.decode(z)
loss = 0.5 * (output - input).pow(2).sum() / input.size(0)

optimizer.zero_grad()
loss.backward()
optimizer.step()
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X (original samples)

g ◦ f (X ) (CNN, d = 2)

g ◦ f (X ) (PCA, d = 2)
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X (original samples)

g ◦ f (X ) (CNN, d = 4)

g ◦ f (X ) (PCA, d = 4)
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X (original samples)

g ◦ f (X ) (CNN, d = 8)

g ◦ f (X ) (PCA, d = 8)
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X (original samples)

g ◦ f (X ) (CNN, d = 16)

g ◦ f (X ) (PCA, d = 16)
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X (original samples)

g ◦ f (X ) (CNN, d = 32)

g ◦ f (X ) (PCA, d = 32)
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To get an intuition of the latent representation, we can pick two samples x and
x ′ at random and interpolate samples along the line in the latent space

∀x , x ′ ∈ 𝒳 2, α ∈ [0, 1], ξ(x , x ′, α) = g((1− α)f (x) + αf (x ′)).

Original space 𝒳

Latent space ℱ

x x ′

f (x)

f (x ′)

f

g
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PCA interpolation (d = 32)
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Autoencoder interpolation (d = 8)
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Autoencoder interpolation (d = 32)
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And we can assess the generative capabilities of the decoder g by introducing a
[simple] density model qZ over the latent space ℱ , sample there, and map the
samples into the image space 𝒳 with g .

We can for instance use a Gaussian model with diagonal covariance matrix.

f (X ) ∼ 𝒩 (m̂, ∆̂)

where m̂ is a vector and ∆̂ a diagonal matrix, both estimated on training data.

Original space 𝒳

Latent space ℱ

g
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Autoencoder sampling (d = 8)

Autoencoder sampling (d = 16)

Autoencoder sampling (d = 32)
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These results are unsatisfying, because the density model used on the latent
space ℱ is too simple and inadequate.

Building a “good” model amounts to our original problem of modeling an
empirical distribution, although it may now be in a lower dimension space.
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The end
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