Deep learning 5.4. L_2 and L_1 penalties

François Fleuret

https://fleuret.org/dlc/

We have motivated the use of a loss with a Bayesian formulation combining the probability of the data given the model and the probability of the model

 $\log \mu_W(w \mid \mathcal{D} = \mathbf{d}) = \log \mu_{\mathcal{D}}(\mathbf{d} \mid W = w) + \log \mu_W(w) - \log Z.$

We have motivated the use of a loss with a Bayesian formulation combining the probability of the data given the model and the probability of the model

 $\log \mu_W(w \mid \mathscr{D} = \mathbf{d}) = \log \mu_{\mathscr{D}}(\mathbf{d} \mid W = w) + \log \mu_W(w) - \log Z.$

If μ_W is a Gaussian density with a covariance matrix proportional to the identity, the log-prior log $\mu_W(w)$ results in a quadratic penalty

$$\lambda \|w\|_2^2 = \lambda \sum_i w_i^2.$$

We have motivated the use of a loss with a Bayesian formulation combining the probability of the data given the model and the probability of the model

 $\log \mu_W(w \mid \mathscr{D} = \mathbf{d}) = \log \mu_{\mathscr{D}}(\mathbf{d} \mid W = w) + \log \mu_W(w) - \log Z.$

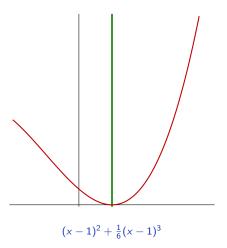
If μ_W is a Gaussian density with a covariance matrix proportional to the identity, the log-prior log $\mu_W(w)$ results in a quadratic penalty

$$\lambda \|w\|_2^2 = \lambda \sum_i w_i^2.$$

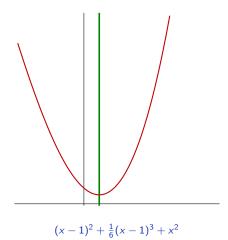
Since this penalty is convex, its sum with a convex functional is convex.

This is called the L_2 regularization, or "weight decay" in the artificial neural network community.

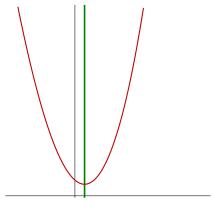
Since the derivative of $\|x\|_2^2$ is zero at zero, the optimal will never move there if it was not already there.



Since the derivative of $\|x\|_2^2$ is zero at zero, the optimal will never move there if it was not already there.

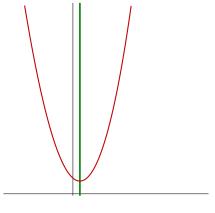


Since the derivative of $\|x\|_2^2$ is zero at zero, the optimal will never move there if it was not already there.



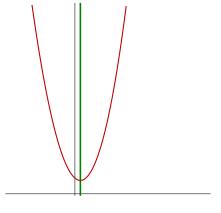
 $(x-1)^2 + \frac{1}{6}(x-1)^3 + 2x^2$

Since the derivative of $\|x\|_2^2$ is zero at zero, the optimal will never move there if it was not already there.



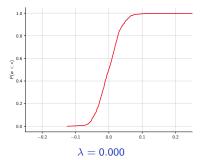
 $(x-1)^2 + \frac{1}{6}(x-1)^3 + 3x^2$

Since the derivative of $\|x\|_2^2$ is zero at zero, the optimal will never move there if it was not already there.



 $(x-1)^2 + \frac{1}{6}(x-1)^3 + 4x^2$

Error			<pre>output = model(train_input[b:b+batch_size])</pre>
λ	Train	Test	<pre>loss = criterion(output, train_target[b:b+batch_size])</pre>
0.000	0.000	0.064	
0.001	0.000	0.063	<pre>for p in model.parameters():</pre>
0.002	0.000	0.064	loss += lambda_12 * p.pow(2).sum()
0.004	0.005	0.065	
0.010	0.022	0.075	<pre>optimizer.zero_grad()</pre>
0.020	0.048	0.101	loss.backward()
			optimizer.step()



François Fleuret

Deep learning / 5.4. L_2 and L_1 penalties

Error			<pre>output = model(train_input[b:b+batch_size])</pre>
λ	Train	Test	<pre>loss = criterion(output, train_target[b:b+batch_size])</pre>
0.000	0.000	0.064	
0.001	0.000	0.063	<pre>for p in model.parameters():</pre>
0.002	0.000	0.064	loss += lambda_12 * p.pow(2).sum()
0.004	0.005	0.065	
0.010	0.022	0.075	<pre>optimizer.zero_grad()</pre>
0.020	0.048	0.101	loss.backward()
			optimizer.step()

```
\lambda = 0.001
```

François Fleuret

Error			<pre>output = model(train_input[b:b+batch_size])</pre>
λ	Train	Test	<pre>loss = criterion(output, train_target[b:b+batch_size])</pre>
0.000	0.000	0.064	
0.001	0.000	0.063	<pre>for p in model.parameters():</pre>
0.002	0.000	0.064	loss += lambda_12 * p.pow(2).sum()
0.004	0.005	0.065	
0.010	0.022	0.075	<pre>optimizer.zero_grad()</pre>
0.020	0.048	0.101	loss.backward()
			optimizer.step()

```
\lambda = 0.002
```

François Fleuret

Error			<pre>output = model(train_input[b:b+batch_size])</pre>
λ	Train	Test	<pre>loss = criterion(output, train_target[b:b+batch_size])</pre>
0.000	0.000	0.064	
0.001	0.000	0.063	<pre>for p in model.parameters():</pre>
0.002	0.000	0.064	loss += lambda_12 * p.pow(2).sum()
0.004	0.005	0.065	
0.010	0.022	0.075	<pre>optimizer.zero_grad()</pre>
0.020	0.048	0.101	loss.backward()
			optimizer.step()

```
\lambda = 0.004
```

François Fleuret

Deep learning / 5.4. L_2 and L_1 penalties

Error			<pre>output = model(train_input[b:b+batch_size])</pre>
λ	Train	Test	<pre>loss = criterion(output, train_target[b:b+batch_size])</pre>
0.000	0.000	0.064	
0.001	0.000	0.063	<pre>for p in model.parameters():</pre>
0.002	0.000	0.064	loss += lambda_12 * p.pow(2).sum()
0.004	0.005	0.065	
0.010	0.022	0.075	<pre>optimizer.zero_grad()</pre>
0.020	0.048	0.101	loss.backward()
			optimizer.step()

```
\lambda = 0.010
```

François Fleuret

Error			<pre>output = model(train_input[b:b+batch_size])</pre>
λ	Train	Test	<pre>loss = criterion(output, train_target[b:b+batch_size])</pre>
0.000	0.000	0.064	
0.001	0.000	0.063	<pre>for p in model.parameters():</pre>
0.002	0.000	0.064	loss += lambda_12 * p.pow(2).sum()
0.004	0.005	0.065	
0.010	0.022	0.075	<pre>optimizer.zero_grad()</pre>
0.020	0.048	0.101	loss.backward()
			optimizer.step()

```
\lambda = 0.020
```

François Fleuret

We can apply the exact same scheme with a Laplace prior

$$\mu(w) = \frac{1}{(2b)^D} \exp\left(-\frac{\|w\|_1}{b}\right)$$
$$= \frac{1}{(2b)^D} \exp\left(-\frac{1}{b}\sum_{d=1}^D |w_d|\right),$$

We can apply the exact same scheme with a Laplace prior

$$\begin{split} \mu(w) &= \frac{1}{(2b)^D} \exp\left(-\frac{\|w\|_1}{b}\right) \\ &= \frac{1}{(2b)^D} \exp\left(-\frac{1}{b}\sum_{d=1}^D |w_d|\right), \end{split}$$

which results in a penalty term of the form

$$\lambda \|w\|_1 = \lambda \sum_i |w_i|.$$

This is the L_1 regularization.

We can apply the exact same scheme with a Laplace prior

$$\begin{split} \mu(w) &= \frac{1}{(2b)^D} \exp\left(-\frac{\|w\|_1}{b}\right) \\ &= \frac{1}{(2b)^D} \exp\left(-\frac{1}{b}\sum_{d=1}^D |w_d|\right), \end{split}$$

which results in a penalty term of the form

$$\lambda \|w\|_1 = \lambda \sum_i |w_i|.$$

This is the L_1 regularization. As for the L_2 , this penalty is convex, and its sum with a convex functional is convex.

An important property of the \textit{L}_1 penalty is that, if $\mathscr S$ is convex, and

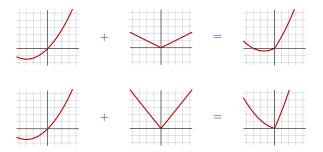
$$w^* = \underset{w}{\operatorname{argmin}} \mathscr{L}(w) + \lambda \|w\|_1$$

then

$$\forall d, \ \left| \frac{\partial \mathscr{L}}{\partial w_d} (w^*) \right| < \lambda \ \Rightarrow \ w_d^* = 0.$$

In practice it means that this penalty pushes some of the variables to zero, but contrary to the L_2 penalty they actually move and remain there.

The λ parameter controls the sparsity of the solution.



 $w_{t+1} = w_t - \eta \left(g_t + \lambda \operatorname{sign}(w_t)\right),$

$$w_{t+1} = w_t - \eta \left(g_t + \lambda \operatorname{sign}(w_t) \right),$$

where sign is applied per-component. This is almost identical to

$$w'_t = w_t - \eta g_t$$
$$w_{t+1} = w'_t - \eta \lambda \operatorname{sign}(w'_t).$$

$$w_{t+1} = w_t - \eta \left(g_t + \lambda \operatorname{sign}(w_t) \right),$$

where sign is applied per-component. This is almost identical to

$$w'_t = w_t - \eta g_t$$
$$w_{t+1} = w'_t - \eta \lambda \operatorname{sign}(w'_t).$$

This update may overshoot, and result in a component of w'_t strictly on one side of 0, while the same component in w_{t+1} is strictly on the other.

$$w_{t+1} = w_t - \eta \left(g_t + \lambda \operatorname{sign}(w_t)\right),$$

where sign is applied per-component. This is almost identical to

$$w'_t = w_t - \eta g_t$$
$$w_{t+1} = w'_t - \eta \lambda \operatorname{sign}(w'_t)$$

This update may overshoot, and result in a component of w'_t strictly on one side of 0, while the same component in w_{t+1} is strictly on the other.

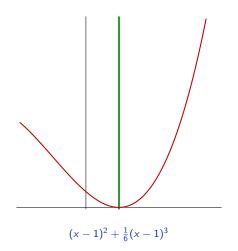
While this is not a problem in principle, since w_t will fluctuate around zero, it can be an issue if the zeroed weights are handled in a specific manner (e.g. sparse coding to reduce memory footprint or computation).

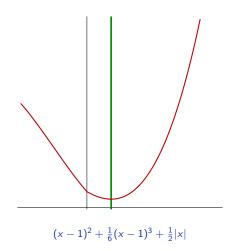
The ${\rm proximal \ operator \ prevents \ parameters \ from \ "crossing \ zero", \ by \ adapting \ \lambda$ when it is too large

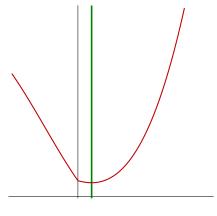
$$w'_t = w_t - \eta g_t$$

$$w_{t+1} = w'_t - \eta \min(\lambda, |w'_t|) \odot \operatorname{sign}(w'_t).$$

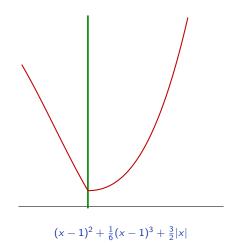
where min is component-wise, and \odot is the Hadamard component-wise product.

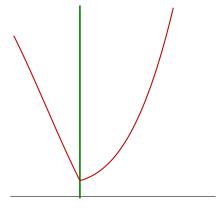






 $(x-1)^2 + \frac{1}{6}(x-1)^3 + |x|$

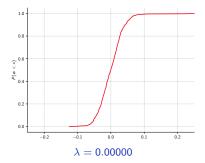




 $(x-1)^2 + \frac{1}{6}(x-1)^3 + 2|x|$

Error			<pre>output = model(train_input[b:b+batch_size])</pre>		
λ	Train	Test	<pre>loss = criterion(output, train_target[b:b+batch_size])</pre>		
0.00000	0.000	0.064			
0.00001	0.000	0.063	<pre>optimizer.zero_grad()</pre>		
0.00002	0.000	0.067	loss.backward()		
0.00005	0.004	0.068	optimizer.step()		
0.00010	0.087	0.128			
0.00020	0.057	0.101	with torch.no_grad():		
0.00050	0.496	0.516	for p in model.parameters():		
-					

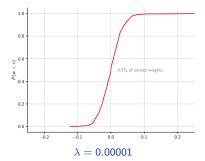
```
p.sub_(p.sign() * p.abs().clamp(max = lambda_11))
```



François Fleuret

Error			<pre>output = model(train_input[b:b+batch_size])</pre>		
λ	Train	Test	<pre>loss = criterion(output, train_target[b:b+batch_size])</pre>		
0.00000	0.000	0.064			
0.00001	0.000	0.063	<pre>optimizer.zero_grad()</pre>		
0.00002	0.000	0.067	loss.backward()		
0.00005	0.004	0.068	optimizer.step()		
0.00010	0.087	0.128			
0.00020	0.057	0.101	with torch.no_grad():		
0.00050	0.496	0.516	<pre>for p in model.parameters():</pre>		

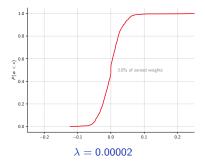
```
p.sub_(p.sign() * p.abs().clamp(max = lambda_11))
```



François Fleuret

Error			<pre>output = model(train_input[b:b+batch_size])</pre>		
λ	Train	Test	<pre>loss = criterion(output, train_target[b:b+batch_size])</pre>		
0.00000	0.000	0.064			
0.00001	0.000	0.063	<pre>optimizer.zero_grad()</pre>		
0.00002	0.000	0.067	loss.backward()		
0.00005	0.004	0.068	optimizer.step()		
0.00010	0.087	0.128			
0.00020	0.057	0.101	with torch.no_grad():		
0.00050	0.496	0.516	<pre>for p in model.parameters():</pre>		

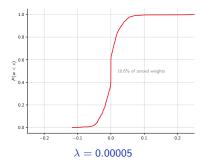
```
p.sub_(p.sign() * p.abs().clamp(max = lambda_11))
```



François Fleuret

Error			<pre>output = model(train_input[b:b+batch_size])</pre>		
λ	Train	Test	<pre>loss = criterion(output, train_target[b:b+batch_size])</pre>		
0.00000	0.000	0.064			
0.00001	0.000	0.063	<pre>optimizer.zero_grad()</pre>		
0.00002	0.000	0.067	loss.backward()		
0.00005	0.004	0.068	optimizer.step()		
0.00010	0.087	0.128			
0.00020	0.057	0.101	with torch.no_grad():		
0.00050	0.496	0.516	<pre>for p in model.parameters():</pre>		

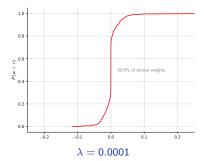
```
p.sub_(p.sign() * p.abs().clamp(max = lambda_11))
```



François Fleuret

Error			<pre>output = model(train_input[b:b+batch_size])</pre>		
λ	Train	Test	<pre>loss = criterion(output, train_target[b:b+batch_size])</pre>		
0.00000	0.000	0.064			
0.00001	0.000	0.063	<pre>optimizer.zero_grad()</pre>		
0.00002	0.000	0.067	loss.backward()		
0.00005	0.004	0.068	optimizer.step()		
0.00010	0.087	0.128			
0.00020	0.057	0.101	with torch.no_grad():		
0.00050	0.496	0.516	<pre>for p in model.parameters():</pre>		

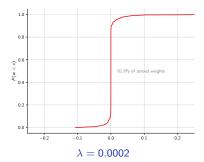
```
p.sub_(p.sign() * p.abs().clamp(max = lambda_11))
```



François Fleuret

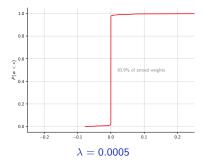
Error			<pre>output = model(train_input[b:b+batch_size])</pre>		
λ	Train	Test	<pre>loss = criterion(output, train_target[b:b+batch_size])</pre>		
0.00000	0.000	0.064			
0.00001	0.000	0.063	<pre>optimizer.zero_grad()</pre>		
0.00002	0.000	0.067	loss.backward()		
0.00005	0.004	0.068	optimizer.step()		
0.00010	0.087	0.128			
0.00020	0.057	0.101	with torch.no_grad():		
0.00050	0.496	0.516	<pre>for p in model.parameters():</pre>		

```
p.sub_(p.sign() * p.abs().clamp(max = lambda_11))
```



Error			<pre>output = model(train_input[b:b+batch_size])</pre>
λ	Train	Test	<pre>loss = criterion(output, train_target[b:b+batch_size])</pre>
0.00000	0.000	0.064	
0.00001	0.000	0.063	<pre>optimizer.zero_grad()</pre>
0.00002	0.000	0.067	loss.backward()
0.00005	0.004	0.068	optimizer.step()
0.00010	0.087	0.128	
0.00020	0.057	0.101	with torch.no_grad():
0.00050	0.496	0.516	for p in model.parameters():
-			

```
p.sub_(p.sign() * p.abs().clamp(max = lambda_11))
```



François Fleuret

Penalties on the weights may be useful when dealing with small models and small data-sets and are still standard when data is scarce.

While they have a limited impact for large-scale deep learning, they may still provide the little push needed to beat baselines.

The end