
Deep learning

4.3. PyTorch modules and batch processing

François Fleuret

https://fleuret.org/dlc/

https://fleuret.org/dlc/

Elements from torch.nn.functional are autograd-compliant functions which
compute a result from provided arguments alone.

Subclasses of torch.nn.Module are losses and network components. The latter
embed parameters to be optimized during training.

Parameters are of the type torch.nn.Parameter which is a Tensor with
requires_grad to True, and known to be a model parameter by various utility
functions, in particular torch.nn.Module.parameters().

Usually torch.nn.functional is imported as F, and torch.nn as nn.

François Fleuret Deep learning / 4.3. PyTorch modules and batch processing 1 / 15

Elements from torch.nn.functional are autograd-compliant functions which
compute a result from provided arguments alone.

Subclasses of torch.nn.Module are losses and network components. The latter
embed parameters to be optimized during training.

Parameters are of the type torch.nn.Parameter which is a Tensor with
requires_grad to True, and known to be a model parameter by various utility
functions, in particular torch.nn.Module.parameters().

Usually torch.nn.functional is imported as F, and torch.nn as nn.

François Fleuret Deep learning / 4.3. PyTorch modules and batch processing 1 / 15

Elements from torch.nn.functional are autograd-compliant functions which
compute a result from provided arguments alone.

Subclasses of torch.nn.Module are losses and network components. The latter
embed parameters to be optimized during training.

Parameters are of the type torch.nn.Parameter which is a Tensor with
requires_grad to True, and known to be a model parameter by various utility
functions, in particular torch.nn.Module.parameters().

Usually torch.nn.functional is imported as F, and torch.nn as nn.

François Fleuret Deep learning / 4.3. PyTorch modules and batch processing 1 / 15

!
Functions and modules from nn process batches of inputs stored in a
tensor whose first dimension indexes them, and produce a corresponding
tensor with the same additional dimension.

E.g. a fully connected layer RC → RD expects as input a tensor of size N × C
and computes a tensor of size N × D, where N is the number of samples and
can vary from a call to another. We come back to this in a second.

François Fleuret Deep learning / 4.3. PyTorch modules and batch processing 2 / 15

The autograd-compliant function

F.relu(input, inplace=False)

takes a tensor of any size as input, applies ReLU on each value to produce a
result tensor of same size.

>>> x
tensor([[0.8008, -0.2586, 0.5019, -0.2002, -0.7416],

[0.0557, 0.6046, 0.0864, -0.5929, 1.2606]])
>>> F.relu(x)
tensor([[0.8008, 0.0000, 0.5019, 0.0000, 0.0000],

[0.0557, 0.6046, 0.0864, 0.0000, 1.2606]])

inplace indicates if the operation should modify the argument itself. This may
be desirable to reduce the memory footprint of the processing.

François Fleuret Deep learning / 4.3. PyTorch modules and batch processing 3 / 15

The autograd-compliant function

F.relu(input, inplace=False)

takes a tensor of any size as input, applies ReLU on each value to produce a
result tensor of same size.

>>> x
tensor([[0.8008, -0.2586, 0.5019, -0.2002, -0.7416],

[0.0557, 0.6046, 0.0864, -0.5929, 1.2606]])
>>> F.relu(x)
tensor([[0.8008, 0.0000, 0.5019, 0.0000, 0.0000],

[0.0557, 0.6046, 0.0864, 0.0000, 1.2606]])

inplace indicates if the operation should modify the argument itself. This may
be desirable to reduce the memory footprint of the processing.

François Fleuret Deep learning / 4.3. PyTorch modules and batch processing 3 / 15

The autograd-compliant function

F.relu(input, inplace=False)

takes a tensor of any size as input, applies ReLU on each value to produce a
result tensor of same size.

>>> x
tensor([[0.8008, -0.2586, 0.5019, -0.2002, -0.7416],

[0.0557, 0.6046, 0.0864, -0.5929, 1.2606]])
>>> F.relu(x)
tensor([[0.8008, 0.0000, 0.5019, 0.0000, 0.0000],

[0.0557, 0.6046, 0.0864, 0.0000, 1.2606]])

inplace indicates if the operation should modify the argument itself. This may
be desirable to reduce the memory footprint of the processing.

François Fleuret Deep learning / 4.3. PyTorch modules and batch processing 3 / 15

The module

nn.Linear(in_features, out_features, bias=True)

implements a RC → RD fully-connected layer. It takes as input a tensor of size
N × C and produces a tensor of size N × D.

>>> f = nn.Linear(in_features = 10, out_features = 4)
>>> for n, p in f.named_parameters(): print(n, p.size())
...
weight torch.Size([4, 10])
bias torch.Size([4])
>>> x = torch.randn(523, 10)
>>> y = f(x)
>>> y.size()
torch.Size([523, 4])

!
The weights and biases are automatically randomized at creation. We
will come back to that later.

François Fleuret Deep learning / 4.3. PyTorch modules and batch processing 4 / 15

The module

nn.Linear(in_features, out_features, bias=True)

implements a RC → RD fully-connected layer. It takes as input a tensor of size
N × C and produces a tensor of size N × D.

>>> f = nn.Linear(in_features = 10, out_features = 4)
>>> for n, p in f.named_parameters(): print(n, p.size())
...
weight torch.Size([4, 10])
bias torch.Size([4])
>>> x = torch.randn(523, 10)
>>> y = f(x)
>>> y.size()
torch.Size([523, 4])

!
The weights and biases are automatically randomized at creation. We
will come back to that later.

François Fleuret Deep learning / 4.3. PyTorch modules and batch processing 4 / 15

The module

nn.Linear(in_features, out_features, bias=True)

implements a RC → RD fully-connected layer. It takes as input a tensor of size
N × C and produces a tensor of size N × D.

>>> f = nn.Linear(in_features = 10, out_features = 4)
>>> for n, p in f.named_parameters(): print(n, p.size())
...
weight torch.Size([4, 10])
bias torch.Size([4])
>>> x = torch.randn(523, 10)
>>> y = f(x)
>>> y.size()
torch.Size([523, 4])

!
The weights and biases are automatically randomized at creation. We
will come back to that later.

François Fleuret Deep learning / 4.3. PyTorch modules and batch processing 4 / 15

The module

nn.MSELoss()

implements the Mean Square Error loss: the sum of the component-wise
squared differences, divided by the total number of components in the tensors.

>>> f = nn.MSELoss()
>>> x = torch.tensor([[3.]])
>>> y = torch.tensor([[0.]])
>>> f(x, y)
tensor(9.)
>>> x = torch.tensor([[3., 0., 0., 0.]])
>>> y = torch.tensor([[0., 0., 0., 0.]])
>>> f(x, y)
tensor(2.2500)

The first parameter of a loss is traditionally called the input and the second the
target. These two quantities may be of different dimensions or even types for
some losses (e.g. for classification).

François Fleuret Deep learning / 4.3. PyTorch modules and batch processing 5 / 15

The module

nn.MSELoss()

implements the Mean Square Error loss: the sum of the component-wise
squared differences, divided by the total number of components in the tensors.

>>> f = nn.MSELoss()
>>> x = torch.tensor([[3.]])
>>> y = torch.tensor([[0.]])
>>> f(x, y)
tensor(9.)
>>> x = torch.tensor([[3., 0., 0., 0.]])
>>> y = torch.tensor([[0., 0., 0., 0.]])
>>> f(x, y)
tensor(2.2500)

The first parameter of a loss is traditionally called the input and the second the
target. These two quantities may be of different dimensions or even types for
some losses (e.g. for classification).

François Fleuret Deep learning / 4.3. PyTorch modules and batch processing 5 / 15

The module

nn.MSELoss()

implements the Mean Square Error loss: the sum of the component-wise
squared differences, divided by the total number of components in the tensors.

>>> f = nn.MSELoss()
>>> x = torch.tensor([[3.]])
>>> y = torch.tensor([[0.]])
>>> f(x, y)
tensor(9.)
>>> x = torch.tensor([[3., 0., 0., 0.]])
>>> y = torch.tensor([[0., 0., 0., 0.]])
>>> f(x, y)
tensor(2.2500)

The first parameter of a loss is traditionally called the input and the second the
target.

These two quantities may be of different dimensions or even types for
some losses (e.g. for classification).

François Fleuret Deep learning / 4.3. PyTorch modules and batch processing 5 / 15

The module

nn.MSELoss()

implements the Mean Square Error loss: the sum of the component-wise
squared differences, divided by the total number of components in the tensors.

>>> f = nn.MSELoss()
>>> x = torch.tensor([[3.]])
>>> y = torch.tensor([[0.]])
>>> f(x, y)
tensor(9.)
>>> x = torch.tensor([[3., 0., 0., 0.]])
>>> y = torch.tensor([[0., 0., 0., 0.]])
>>> f(x, y)
tensor(2.2500)

The first parameter of a loss is traditionally called the input and the second the
target. These two quantities may be of different dimensions or even types for
some losses (e.g. for classification).

François Fleuret Deep learning / 4.3. PyTorch modules and batch processing 5 / 15

! Criteria do not accept a target with requires_grad to True.

>>> import torch
>>> f = nn.MSELoss()
>>> x = torch.tensor([3., 2.]).requires_grad_()
>>> y = torch.tensor([0., -2.]).requires_grad_()
>>> f(x, y)
Traceback (most recent call last):
/.../
AssertionError: nn criterions don't compute the gradient w.r.t.
targets - please mark these tensors as not requiring gradients

François Fleuret Deep learning / 4.3. PyTorch modules and batch processing 6 / 15

Batch processing

François Fleuret Deep learning / 4.3. PyTorch modules and batch processing 7 / 15

Functions and modules from nn process samples by batches. This is motivated
by the computational speed-up it induces.

Training a large network on CIFAR10:

Batch size Time per epoch
1 4h22min
64 4min50s

speed up of ×54.

François Fleuret Deep learning / 4.3. PyTorch modules and batch processing 8 / 15

To evaluate a module on a sample, both the module’s parameters and the
sample have to be first copied into cache memory, which is fast but small.

For any model of reasonable size, only a fraction of its parameters can be kept
in cache, so a module’s parameters have to be copied there every time they are
used.

Memory transfers are slower than computation. Batch processing cuts down
to one copy of the parameters to the cache per batch.

It also cuts down the use of Python loops, which are awfully slow.

François Fleuret Deep learning / 4.3. PyTorch modules and batch processing 9 / 15

To evaluate a module on a sample, both the module’s parameters and the
sample have to be first copied into cache memory, which is fast but small.

For any model of reasonable size, only a fraction of its parameters can be kept
in cache, so a module’s parameters have to be copied there every time they are
used.

Memory transfers are slower than computation. Batch processing cuts down
to one copy of the parameters to the cache per batch.

It also cuts down the use of Python loops, which are awfully slow.

François Fleuret Deep learning / 4.3. PyTorch modules and batch processing 9 / 15

To evaluate a module on a sample, both the module’s parameters and the
sample have to be first copied into cache memory, which is fast but small.

For any model of reasonable size, only a fraction of its parameters can be kept
in cache, so a module’s parameters have to be copied there every time they are
used.

Memory transfers are slower than computation. Batch processing cuts down
to one copy of the parameters to the cache per batch.

It also cuts down the use of Python loops, which are awfully slow.

François Fleuret Deep learning / 4.3. PyTorch modules and batch processing 9 / 15

Consider a model composed of three modules

f = f3 ◦ f2 ◦ f1,

and we want to compute f (x1), f (x2), f (x3).

Copying the xns to cache memory

Copying the fd s’ parameters to cache memory

Computing a fd (.)

Processing samples one by one:

Time

Batch processing:

Time

François Fleuret Deep learning / 4.3. PyTorch modules and batch processing 10 / 15

Consider a model composed of three modules

f = f3 ◦ f2 ◦ f1,

and we want to compute f (x1), f (x2), f (x3).

Copying the xns to cache memory

Copying the fd s’ parameters to cache memory

Computing a fd (.)

Processing samples one by one:

Time

Batch processing:

Time

François Fleuret Deep learning / 4.3. PyTorch modules and batch processing 10 / 15

Consider a model composed of three modules

f = f3 ◦ f2 ◦ f1,

and we want to compute f (x1), f (x2), f (x3).

Copying the xns to cache memory

Copying the fd s’ parameters to cache memory

Computing a fd (.)

Processing samples one by one:

Time

Batch processing:

Time

François Fleuret Deep learning / 4.3. PyTorch modules and batch processing 10 / 15

With

def timing(x, w, batch = False, nb = 101):
t = torch.zeros(nb)

for u in range(nb):
t0 = time.perf_counter()
if batch:

y = x.mm(w.t())
else:

y = torch.empty(x.size(0), w.size(0))
for k in range(y.size(0)): y[k] = w.mv(x[k])

y.is_cuda and torch.cuda.synchronize()
t[u] = time.perf_counter() - t0

return t.median().item()

François Fleuret Deep learning / 4.3. PyTorch modules and batch processing 11 / 15

x = torch.randn(2500, 1000)
w = torch.randn(1500, 1000)
print('Batch-processing speed-up on CPU %.1f' %

(timing(x, w, batch = False) / timing(x, w, batch = True)))

x, w = x.to('cuda'), w.to('cuda')
print('Batch-processing speed-up on GPU %.1f' %

(timing(x, w, batch = False) / timing(x, w, batch = True)))

prints

Batch-processing speed-up on CPU 4.6
Batch-processing speed-up on GPU 144.4

François Fleuret Deep learning / 4.3. PyTorch modules and batch processing 12 / 15

Formally, we have to revisit a bit some expressions we saw previously for fully
connected layers. We had

∀l , n, w (l) ∈ Rdl×dl−1 , x
(l−1)
n ∈ Rdl−1 , s

(l)
n = w (l) x

(l−1)
n .

From now on, we will use row vectors, so that we can represent a series of
samples as a 2d array with the first index being the sample’s index.

x =

 x1,1 . . . x1,D
...

. . .
...

xN,1 . . . xN,D

 =

(x1)

⊤

...

(xN)
⊤

 ,

which is an element of RN×D .

François Fleuret Deep learning / 4.3. PyTorch modules and batch processing 13 / 15

Formally, we have to revisit a bit some expressions we saw previously for fully
connected layers. We had

∀l , n, w (l) ∈ Rdl×dl−1 , x
(l−1)
n ∈ Rdl−1 , s

(l)
n = w (l) x

(l−1)
n .

From now on, we will use row vectors, so that we can represent a series of
samples as a 2d array with the first index being the sample’s index.

x =

 x1,1 . . . x1,D
...

. . .
...

xN,1 . . . xN,D

 =

(x1)

⊤

...

(xN)
⊤

 ,

which is an element of RN×D .

François Fleuret Deep learning / 4.3. PyTorch modules and batch processing 13 / 15

To make all sample row vectors and apply a linear operator, we want

∀n, s
(l)
n =

(
w (l)

(
x
(l−1)
n

)⊤
)⊤

= x
(l−1)
n

(
w (l)

)⊤

which gives a tensorial expression for the full batch

s(l) = x(l−1)
(
w (l)

)⊤
.

And in torch/nn/functional.py

def linear(input, weight, bias=None):
if input.dim() == 2 and bias is not None:

fused op is marginally faster
return torch.addmm(bias, input, weight.t())

output = input.matmul(weight.t())
if bias is not None:

output += bias
return output

François Fleuret Deep learning / 4.3. PyTorch modules and batch processing 14 / 15

To make all sample row vectors and apply a linear operator, we want

∀n, s
(l)
n =

(
w (l)

(
x
(l−1)
n

)⊤
)⊤

= x
(l−1)
n

(
w (l)

)⊤

which gives a tensorial expression for the full batch

s(l) = x(l−1)
(
w (l)

)⊤
.

And in torch/nn/functional.py

def linear(input, weight, bias=None):
if input.dim() == 2 and bias is not None:

fused op is marginally faster
return torch.addmm(bias, input, weight.t())

output = input.matmul(weight.t())
if bias is not None:

output += bias
return output

François Fleuret Deep learning / 4.3. PyTorch modules and batch processing 14 / 15

Similarly for the backward pass of a linear layer we get[[
∂ℒ

∂w (l)

]]
=

[[
∂ℒ

∂s(l)

]]⊤
x(l−1),

and [[
∂ℒ

∂x(l)

]]
=

[[
∂𝓁

∂s(l+1)

]]
w (l+1).

François Fleuret Deep learning / 4.3. PyTorch modules and batch processing 15 / 15

The End

	Batch processing

